#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls(p) ch[p][0]
#define rs(p) ch[p][1]
const int MAXN = 100005;
int a[MAXN];
ll sum[MAXN], suf[MAXN];
int val[MAXN];
int ch[MAXN][2], siz[MAXN], tot, root;
inline void Init() {
root = 0, tot = 0;
}
inline int NewNode(int v) {
int p = ++tot;
ch[p][0] = ch[p][1] = 0;
val[p] = v;
siz[p] = 1;
return p;
}
inline void PushUp(int p) {
siz[p] = siz[ls(p)] + siz[rs(p)] + 1;
}
//O(n)建树,返回新树的根
int st[MAXN], stop;
inline int Build(int n) {
stop = 0;
for(int i = 1; i <= n; ++i) {
//实际上笛卡尔树中tmp就是i
int tmp = NewNode(a[i]), last = 0;
//大根
while(stop && val[st[stop]] < val[tmp]) {
last = st[stop];
PushUp(last);
st[stop--] = 0;
}
if(stop)
rs(st[stop]) = tmp;
ls(tmp) = last;
st[++stop] = tmp;
}
while(stop)
PushUp(st[stop--]);
return st[1];
}
//[L,R]的最值下标
int Query(int root,int L,int R){
//笛卡尔树中节点下标=数组下标(从1开始)
while(root<L||root>R)
root=root<L?rs(root):ls(root);
return root;
}
ll CalcSum(int p) {
if(!p)
return 0;
//p节点管辖的范围就是其左右子树,这道题里面要把根去掉
return CalcSum(ls(p)) + CalcSum(rs(p)) + 1ll * val[p] * ((siz[ls(p)]+1)*(siz[rs(p)]+1)-1);
}
int n;
int top;
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
while(~scanf("%d", &n)) {
Init();
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
root = Build(n);
printf("%lld
", CalcSum(root));
}
}