• 模板


    多项式加减乘除取余求逆求快速幂都有了哦,加上NTT和BM都在。

    #include<bits/stdc++.h>
    #define ll long long
    #define re register
    #define gc get_char
    #define cs const
    
    namespace IO{
    	inline char get_char(){
    		static cs int Rlen=1<<22|1;
    		static char buf[Rlen],*p1,*p2;
    		return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++;
    	}
    	
    	template<typename T>
    	inline T get(){
    		char c;
    		while(!isdigit(c=gc()));T num=c^48;
    		while(isdigit(c=gc()))num=(num+(num<<2)<<1)+(c^48);
    		return num;
    	}
    	inline int getint(){return get<int>();}
    }
    using namespace IO;
    
    using std::cerr;
    using std::cout;
    
    cs int mod=998244353;
    inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
    inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
    inline int mul(int a,int b){static ll r;r=(ll)a*b;return r>=mod?r%mod:r;}
    inline int power(int a,int b,int res=1){
    	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
    	return res;
    }
    inline void Inc(int &a,int b){(a+=b)>=mod&&(a-=mod);}
    inline void Dec(int &a,int b){(a-=b)<0&&(a+=mod);}
    inline void Mul(int &a,int b){a=mul(a,b);}
    
    typedef std::vector<int> Poly;
    
    std::ostream &operator<<(std::ostream &out,cs Poly &a){
    	if(!a.size())out<<"empty ";
    	for(int re i:a)out<<i<<" ";
    	return out;
    }
    
    cs int bit=20,SIZE=1<<20|1;
    int r[SIZE],*w[bit+1];
    inline void init_NTT(){
    	for(int re i=1;i<=bit;++i)w[i]=new int[1<<(i-1)];
    	int wn=power(3,mod-1>>bit);
    	w[bit][0]=1;for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
    	for(int re i=bit-1;i;--i)
    	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
    }
    inline void NTT(Poly &A,int len,int typ){
    	for(int re i=0;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
    	for(int re i=1,d=1;i<len;i<<=1,++d)
    	for(int re j=0;j<len;j+=i<<1)
    	for(int re k=0;k<i;++k){
    		int &t1=A[j+k],&t2=A[i+j+k],t=mul(t2,w[d][k]);
    		t2=dec(t1,t),Inc(t1,t);
    	}
    	if(typ==-1){
    		std::reverse(A.begin()+1,A.begin()+len);
    		for(int re i=0,inv=power(len,mod-2);i<len;++i)Mul(A[i],inv);
    	}
    }
    inline void init_rev(int l){
    	for(int re i=0;i<l;++i)r[i]=r[i>>1]>>1|((i&1)?l>>1:0);
    }
    
    inline Poly operator+(cs Poly &a,cs Poly &b){
    	Poly c=a;if(b.size()>a.size())c.resize(b.size());
    	for(int re i=0;i<b.size();++i)Inc(c[i],b[i]);
    	return c;
    }
    
    inline Poly operator-(cs Poly &a,cs Poly &b){
    	Poly c=a;if(b.size()>a.size())c.resize(b.size());
    	for(int re i=0;i<b.size();++i)Dec(c[i],b[i]);
    	return c;
    }
    
    inline Poly operator*(Poly a,Poly b){
    	if(!a.size()||!b.size())return Poly(0,0);
    	int deg=a.size()+b.size()-1,l=1;
    	if(deg<128){
    		Poly c(deg,0);
    		for(int re i=0,li=a.size();i<li;++i)
    		for(int re j=0,lj=b.size();j<lj;++j)Inc(c[i+j],mul(a[i],b[j]));
    		return c;
    	}
    	while(l<deg)l<<=1;
    	init_rev(l);
    	a.resize(l),NTT(a,l,1);
    	b.resize(l),NTT(b,l,1);
    	for(int re i=0;i<l;++i)a[i]=mul(a[i],b[i]);
    	NTT(a,l,-1);a.resize(deg);
    	return a;
    }
    
    inline Poly Inv(cs Poly &a,int lim){
    	Poly c,b(1,power(a[0],mod-2));
    	for(int re l=4;(l>>2)<lim;l<<=1){
    		c=a;c.resize(l>>1);
    		init_rev(l);
    		c.resize(l),NTT(c,l,1);
    		b.resize(l),NTT(b,l,1);
    		for(int re i=0;i<l;++i)b[i]=mul(b[i],dec(2,mul(b[i],c[i])));
    		NTT(b,l,-1);b.resize(l>>1);
    	}
    	b.resize(lim);
    	return b;
    }
    
    inline Poly operator/(Poly a,Poly b){
    	if(a.size()<b.size())return Poly(0,0);
    	int l=1,deg=a.size()-b.size()+1;
    	reverse(a.begin(),a.end());
    	reverse(b.begin(),b.end());
    	while(l<deg)l<<=1;
    	b=Inv(b,l);b.resize(deg); 
    	a=a*b;a.resize(deg);
    	reverse(a.begin(),a.end());
    	return a;
    }
    
    inline Poly operator%(cs Poly &a,cs Poly &b){
    	if(a.size()<b.size())return a;
    	Poly c=a-(a/b)*b;
    	c.resize(b.size()-1);
    	return c;
    }
    
    inline Poly Ksm(Poly a,int b,Poly mod){
    	Poly res(1,1);
    	while(b){
    		if(b&1)res=res*a%mod;
    		a=a*a%mod;
    		b>>=1;
    	}
    	return res;
    }
    namespace BM{
    	cs int M=1e4+4;
    	int L,cnt,a[M],fail[M],delta[M];
    	Poly R[M];
    	inline Poly solve(){
    		for(int re i=1;i<=L;++i){
    			int d=a[i];
    			for(int re j=1,lj=R[cnt].size();j<lj;++j)Dec(d,mul(R[cnt][j],a[i-j]));
    			if(!d)continue;
    			fail[cnt]=i,delta[cnt]=d;
    			if(!cnt){++cnt;R[cnt].resize(i+1);}
    			else {
    				int coef=mul(delta[cnt],power(delta[cnt-1],mod-2));
    				R[cnt+1].resize(i-fail[cnt-1]);R[cnt+1].push_back(coef);
    				for(int re j=1,lj=R[cnt-1].size();j<lj;++j)R[cnt+1].push_back(mul(mod-coef,R[cnt-1][j]));
    				R[cnt+1]=R[cnt+1]+R[cnt];++cnt;
    			}
    		}
    		return R[cnt];
    	}
    }
    
    int n,m;
    Poly f,g;
    signed main(){
    #ifdef zxyoi
    	freopen("BM.in","r",stdin);
    #endif
    	init_NTT();
    	n=getint(),m=getint();BM::L=n;
    	for(int re i=1;i<=n;++i)BM::a[i]=getint();
    	f=BM::solve();
    	for(int re i=1,li=f.size();i<li;++i)cout<<f[i]<<" ";cout<<"
    ";
    	std::reverse(f.begin(),f.end());
    	for(int re i=0,li=f.size();i<li;++i)f[i]=dec(0,f[i]);f.back()=1;
    	g.resize(2);g[1]=1;
    	g=Ksm(g,m,f);
    	int ans=0;
    	for(int re i=0;i<g.size();++i)Inc(ans,mul(g[i],BM::a[i+1]));
    	cout<<ans<<"
    ";
    	return 0;
    }
    
  • 相关阅读:
    负载均衡的部署方式
    nginx 负载均衡相关知识
    nginx 的模块及处理流程
    win7 下配置resin的一些tip
    Eclipse插件安装的三种方法
    win 7 下Maven环境的搭建
    Effective C++ 第二版 17)operator=检查自己 18)接口完整 19)成员和友元函数
    网络子系统54_ip协议分片重组_定位ipq
    HDU 1796How many integers can you find(简单容斥定理)
    如何关闭dell inspiron n4010的内置麦克
  • 原文地址:https://www.cnblogs.com/Yinku/p/11326934.html
Copyright © 2020-2023  润新知