• 模板


    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    //不要输出-0.0之类的数
    
    const double eps=1e-8;
    const double inf=1e9;
    const double pi=acos(-1.0);     //小数点后15位精度,和atan2相同
    
    //判断浮点数的符号
    inline int cmp(double x) {
        return (fabs(x)<eps)?0:((x>0.0)?1:-1);
    }
    
    inline double sqr(double x) {
        return x*x;
    }
    
    
    namespace ns_Point {
    
        struct Point {
            double x,y;
            Point() {};
            Point(const double x,const double y):x(x),y(y) {};
    
            friend Point operator+(const Point &a,const Point &b) {
                return Point(a.x+b.x,a.y+b.y);
            }
            friend Point operator-(const Point &a,const Point &b) {
                return Point(a.x-b.x,a.y-b.y);
            }
            friend Point operator*(const Point &p,const double k) {
                return Point(p.x*k,p.y*k);
            }
            friend Point operator*(const double k,const Point &p) {
                return Point(p.x*k,p.y*k);
            }
            friend Point operator/(const Point &p,const double k) {
                return Point(p.x/k,p.y/k);
            }
            friend bool operator==(const Point &a,const Point &b) {
                return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
            }
            inline Point rotate(double A) {
                //向量绕原点旋转A弧度
                return Point(x*cos(A)-y*sin(A),x*sin(A)+y*cos(A));
            }
            inline double norm() {
                return sqrt(sqr(x)+sqr(y));
            }
            inline double angle() {
                //返回向量的倾斜角,[-pi, pi]
                return atan2(y,x);
            }
        };
    
        double det(const Point &a,const Point &b) {
            return a.x*b.y-a.y*b.x;
        }
        double dot(const Point &a,const Point &b) {
            return a.x*b.x+a.y*b.y;
        }
        double dist(const Point &a,const Point &b) {
            return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
        }
    
    }
    
    
    namespace ns_Line {
        using namespace ns_Point;
    
        struct Line {
            Point a,b;
            Line() {};
            Line(const Point &a,const Point &b):a(a),b(b) {};
            Line move_dist(const double &d) {
                //向法向平移d单位长度
                //单位法向量n,从a指向b
                Point n=b-a;
                n=n/n.norm();
                //左旋90度
                n=n.rotate(pi/2.0);
                return Line(a+n*d,b+n*d);
            }
        };
    
        double dist_point_to_line(const Point &p,const Line &l) {
            Point a=l.a,b=l.b;
            //当a与b可以重合时,这里要加上下面的语句
            //if(a==b)
            //    return a.dist(p);
            if(cmp(dot(p-a,b-a))<0)
                return dist(p,a);
            if(cmp(dot(p-b,a-b))<0)
                return dist(p,b);
            return fabs(det(a-p,b-p)/dist(a,b));
        }
        Point point_project_on_line(const Point &p,const Line &l)  {
            Point a=l.a,b=l.b;
            double r=dot(b-a,p-a)/dot(b-a,b-a);
            return a+(b-a)*r;
        }
        bool point_on_line(const Point &p,const Line &l)  {
            Point a=l.a,b=l.b;
            //这里的line是线段
            //第一个cmp意思是叉积等于0,意味着直线穿过该点
            //第二个cmp的<=意思是点在线段内(含端点),当改为<为点在线段内(不含端点)
            return cmp(det(p-a,b-a))==0&&cmp(dot(p-a,p-b))<=0;
        }
        bool parallel(const Line &tl,const Line &l)  {
            Point a=tl.a,b=tl.b;
            //叉积等于0,意味着向量平行
            return !cmp(det(a-b,l.a-l.b));
        }
        bool intersect(const Line &tl,const Line &l,Point &p) {
            Point a=tl.a,b=tl.b;
            //判断直线是否相交,相交则求出交点(不需要交点可以直接return)
            if(parallel(tl,l))
                return false;
            double s1=det(a-l.a,l.b-l.a);
            double s2=det(b-l.a,l.b-l.a);
            p=(b*s1-a*s2)/(s1-s2);
            return true;
        }
    
    }
    
    
    namespace ns_Polygon {
        using namespace ns_Line;
    
        const int MAXN=105;
        struct Polygon {
            int n;
            Point a[MAXN];
            Polygon() {};
            double perimeter() {
                double sum=0.0;
                a[n]=a[0];
                for(int i=0; i<n; i++)
                    sum+=(a[i+1]-a[i]).norm();
                return sum;
            }
            double area() {
                double sum=0.0;
                a[n]=a[0];
                for(int i=0; i<n; i++)
                    sum+=det(a[i+1],a[i]);
                return sum/2.0;
            }
            Point masscenter() {
                Point ans(0.0,0.0);
                //在这里,当多边形面积为0,返回的是原点
                if(cmp(area())==0)
                    return ans;
                a[n]=a[0];
                for(int i=0; i<n; i++)
                    ans=ans+(a[i]+a[i+1])*det(a[i+1],a[i]);
                return ans/area()/6.0;
            }
            //下面两个只有格点多边形能用
            int border_point_num() {
                int num=0;
                a[n]=a[0];
                for(int i=0; i<n; i++)
                    num+=__gcd(abs(int(a[i+1].x-a[i].x)),abs(int(a[i+1].y-a[i].y)));
                return num;
            }
            int inside_point_num() {
                return (int)area()+1-border_point_num()/2;
            }
        };
    
        int point_in_polygon(Point &p,Polygon &po) {
            Point *a=po.a;
            int n=po.n;
            int num=0,d1,d2,k;
    
            a[n]=a[0];
            for(int i=0; i<n; i++) {
                if(point_on_line(p,Line(a[i],a[i+1])))
                    return 2;
                k=cmp(det(a[i+1]-a[i],p-a[i]));
                d1=cmp(a[i].y-p.y);
                d2=cmp(a[i+1].y-p.y);
                if(k>0&&d1<=0&&d2>0)
                    num++;
                if(k<0&&d2<=0&&d1>0)
                    num--;
            }
            return num!=0;
        }
    
    }
    
    
    namespace ns_Polygon_Convex {
        using namespace ns_Polygon;
    
        struct Polygon_Convex {
            vector<Point> P;
    
            Polygon_Convex(int Size=0) {
                P.resize(Size);
            }
    
            Polygon to_polygon() {
                //注意多边形的最大点数要够
                Polygon p;
                p.n=P.size();
                for(int i=0; i<p.n; i++) {
                    p.a[i]=P[i];
                }
                return p;
            }
    
            double diameter(int &First,int &Second) {
                //旋转卡壳求直径,O(n)
                vector<Point> &p=P;
                int n=P.size();
                double maxd=0.0;
                if(n==1) {
                    First=Second=0;
                    return maxd;
                }
                for(int i=0,j=1; i<n; ++i) {
                    while(cmp(det(p[(i+1)%n]-p[i],p[j]-p[i])-det(p[(i+1)%n]-p[i],p[(j+1)%n]-p[i]))<0)
                        j=(j+1)%n;
                    double d=dist(p[i],p[j]);
                    if(d>maxd) {
                        maxd=d;
                        First=i;
                        Second=j;
                    }
                    d=dist(p[(i+1)%n],p[(j+1)%n]);
                    if(d>maxd) {
                        maxd=d;
                        First=i;
                        Second=j;
                    }
                }
                return maxd;
            }
        };
    
        bool comp_less(const Point&a,const Point &b) {
            //水平序
            return (cmp(a.x-b.x)<0)||(cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0);
        }
        Polygon_Convex convex_hull(vector<Point> a) {
            Polygon_Convex res(2*a.size()+5);
            sort(a.begin(),a.end(),comp_less);
            a.erase(unique(a.begin(),a.end()),a.end());
            int m=0,as=a.size();
            for(int i=0; i<as; ++i) {
                while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)
                    --m;
                res.P[m++]=a[i];
            }
    
            int k=m;
            for(int i=int(a.size())-2; i>=0; --i) {
                while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2])<=0))
                    --m;
                res.P[m++]=a[i];
            }
            //当只有一个点时,凸包保留一个点,否则结尾和开头重复了
            res.P.resize(m-(a.size()>1));
            return res;
        }
    
        int point_in_polygon_convex(const Point &p,const Polygon_Convex &pc) {
            //0在外部,1在内部,2在边界上
            //包括边界
            int n=pc.P.size();
            const vector<Point> &P=pc.P;
            //找一个内部点
            Point g=(P[0]+P[n/3]+P[2*n/3])/3.0;
            int l=0,r=n;
            while(l+1<r) {
                int mid=(l+r)>>1;
                if(cmp(det(P[l]-g,P[mid]-g))>0) {
                    if(cmp(det(P[l]-g,p-g))>=0&&cmp(det(P[mid]-g,p-g))<0)
                        r=mid;
                    else
                        l=mid;
                } else {
                    if(cmp(det(P[l]-g,p-g))<0&&cmp(det(P[mid]-g,p-g))>=0)
                        l=mid;
                    else
                        r=mid;
                }
            }
            r%=n;
            int z=cmp(det(P[r]-p,P[l]-p));
            //z==0在边界上,三点共线
            //z==1在凸包外
            //z==-1在凸包内
            return (z+2)%3;
        }
    
    }
    
    
    namespace ns_Halfplane {
        using namespace ns_Point;
    
        struct Halfplane {
            //向量first->second的左侧
            Point first,second;
            Halfplane() {};
            Halfplane(Point p1,Point p2):first(p1),second(p2) {};
        };
    
        inline int satisfy(Point a,Halfplane p) {
            return cmp(det(a-p.first,p.second-p.first))<=0;
        }
    
        Point intersect_point(const Halfplane &a,const Halfplane &b) {
            double k=det(b.first-b.second,a.first-b.second);
            k=k/(k-det(b.first-b.second,a.second-b.second));
            return a.first+(a.second-a.first)*k;
        }
    
        bool compare(const Halfplane &a,const Halfplane &b) {
            int res=cmp((a.second-a.first).angle()-(b.second-b.first).angle());
            return res==0?satisfy(a.first,b):res<0;
        }
    
    //半平面交,O(nlogn)
        vector<Point> halfplane_intersection(vector<Halfplane> v) {
            sort(v.begin(),v.end(),compare);
            deque<Halfplane> q;
            deque<Point> ans;
            q.push_back(v[0]);
    
            int vs=v.size();
            for(int i=1; i<vs; ++i) {
                if(cmp((v[i].second-v[i].first).angle()-(v[i-1].second-v[i-1].first).angle())==0)
                    continue;
                while(!ans.empty()&&!satisfy(ans.back(),v[i])) {
                    ans.pop_back();
                    q.pop_back();
                }
                while(!ans.empty()&&!satisfy(ans.front(),v[i])) {
                    ans.pop_front();
                    q.pop_front();
                }
                ans.push_back(intersect_point(q.back(),v[i]));
                q.push_back(v[i]);
            }
            while(!ans.empty()&&!satisfy(ans.back(),q.front())) {
                ans.pop_back();
                q.pop_back();
            }
            while(!ans.empty()&&!satisfy(ans.front(),q.back())) {
                ans.pop_front();
                q.pop_front();
            }
            ans.push_back(intersect_point(q.back(),q.front()));
            return vector<Point>(ans.begin(),ans.end());
        }
    
    }
    
    using namespace ns_Halfplane;
    
    void solve() {
        int n;
        scanf("%d",&n);
        double x[5005],y[5005];
        for(int i=1; i<=n; i++) {
            scanf("%lf%lf",&x[i],&y[i]);
        }
        vector<Halfplane> hp;
        hp.push_back(Halfplane(Point(x[1],inf),Point(x[1],y[1])));
        hp.push_back(Halfplane(Point(x[n],y[n]),Point(x[n],inf)));
        hp.push_back(Halfplane(Point(x[n],inf),Point(x[1],inf)));
        for(int i=2; i<=n; i++) {
            hp.push_back(Halfplane(Point(x[i-1],y[i-1]),Point(x[i],y[i])));
        }
    
        /*for(int i=0;i<(int)hp.size();i++){
            printf("Point1 %d: (%.4f, %4f)
    ",i+1,hp[i].first.x,hp[i].first.y);
            printf("Point2 %d: (%.4f, %4f)
    ",i+1,hp[i].second.x,hp[i].second.y);
    
            puts("");
        }*/
    
        double ans=inf;
        vector<Point> hpi=halfplane_intersection(hp);
        int hs=hpi.size();
        for(int i=0; i<hs; i++) {
            //printf("Point %d: (%.4f, %4f)
    ",i+1,hpi[i].x,hpi[i].y);
            ans=min(ans,hpi[i].y);
        }
        printf("%8f
    ",ans);
    }
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in","r",stdin);
    #endif // Yinku
        solve();
        return 0;
    }
    
    
  • 相关阅读:
    iOS 面试题 1
    ios 面试题 0
    得到程序包路径
    UISwitch 监听响应
    在[self addsubView:xxx]中,self.name 和 _name的区别
    /调整button的title的位置
    //设置导航条背景图片
    警告框
    @synthesize
    打开控制台选中路径的文件夹
  • 原文地址:https://www.cnblogs.com/Yinku/p/10954747.html
Copyright © 2020-2023  润新知