• 计算几何-----》两直线是否相交


    POJ 1127

      1 #include<set>
      2 #include<map>
      3 #include<stack>
      4 #include<bitset>
      5 #include<cmath>
      6 #include<string>
      7 #include<vector>
      8 #include<cstdio>
      9 #include<cstring>
     10 #include<iostream>
     11 #include<algorithm>
     12 #define pi acos(-1)
     13 #define close ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
     14 using namespace std;
     15 typedef long long ll;
     16 const int MAX_N=1000+50;
     17 const int INF=0x3f3f3f3f;
     18 const double EPS = 1e-10;
     19 ll mod = 1e9+7;
     20 
     21 
     22 
     23 //考虑误差的加法运算
     24 double add(double a,double b){
     25     if(abs(a + b) < EPS * (abs(a) + abs(b))) return 0;
     26     return a+ b;
     27 } 
     28 
     29 //二维向量结构体
     30 struct P{
     31     double x,y;
     32     P(){}
     33     P(double x, double y) : x(x), y(y){
     34     }
     35     P operator + (P p){
     36         return P(add(x, p.x), add(y, p.y));
     37     }
     38     P operator - (P p){
     39         return P(add(x, -p.x), add(y, -p.y));
     40     }
     41     P operator * (double d){
     42         return P(x * d, y * d);
     43     }
     44     double dot(P p){  //内积 
     45         return add(x * p.x, y * p.y); 
     46     }
     47     double det(P p){ //外积 
     48         return add(x * p.y, -y * p.x);
     49     }
     50 }; 
     51 
     52 //判断点q是否在线段p1-p2上
     53 bool on_seg(P p1, P p2, P q){
     54     return (p1 - q).det(p2-q) == 0 && (p1 - q).dot(p2 - q) <= 0;
     55 } 
     56 
     57 //计算直线p1-p2与直线q1-q2的交点
     58 P intersection(P p1, P p2, P q1, P q2){
     59     return p1 + (p2 - p1) * ((q2 - q1).det(q1 - p1) / (q2 - q1).det(p2 - p1));
     60 } 
     61 
     62 int n;
     63 P p[MAX_N],q[MAX_N];
     64 int m;
     65 int a[MAX_N],b[MAX_N];
     66 
     67 bool g[MAX_N][MAX_N];
     68 
     69 void solve(){
     70     for(int i = 0; i < n; i++){
     71         g[i][i] = true;
     72         for(int j = 0; j < i; j++){
     73             //判断木棍i和木棍j是否有公共点
     74             if((p[i] - q[i]).det(p[j] - q[j]) == 0){
     75                 //平行时
     76                 g[i][j] = g[j][i] = on_seg(p[i], q[i], p[j])
     77                                 ||  on_seg(p[i], q[i], q[j])
     78                                 ||  on_seg(p[j], q[j], p[i])
     79                                 ||  on_seg(p[j], q[j], q[i]);
     80             }else{
     81                 //非平行时
     82                 P r = intersection(p[i], q[i], p[j], q[j]); 
     83                 g[i][j] = g[j][i] = on_seg(p[i], q[i], r) && on_seg(p[j],q[j],r);
     84             } 
     85         }
     86     }
     87     //通过Floyd_Warshall算法判断任意两点间是否相连
     88     for(int k = 0; k < n; k++){
     89         for(int i = 0; i< n; i++){
     90             for(int j = 0; j < n; j++){
     91                 g[i][j] |= g[i][k] && g[k][j];
     92             }
     93         }
     94     }
     95     
     96     for(int i = 0; i < m; i++){
     97         puts(g[a[i] - 1][b[i] - 1] ? "CONNECTED" : "NOTCONNECTED");
     98     } 
     99 }
    100 
    101 int main(){
    102     cin>>n;
    103     for(int i = 0; i < n; i++){
    104         cin>>p[i].x>>p[i].y>>q[i].x>>q[i].y;
    105     }
    106     solve();
    107     int c, d;
    108     while(~scanf("%d%d", &c, &d)) {
    109         if(c==0 && d==0)    break;
    110         if(g[c-1][d-1])
    111             printf("CONNECTED
    ");
    112         else
    113             printf("NOT CONNECTED
    ");
    114     }
    115      return 0;
    116 }
    117 
    118 /*
    119                 ********
    120                ************
    121                ####....#.
    122              #..###.....##....
    123              ###.......######              ###            ###
    124                 ...........               #...#          #...#
    125                ##*#######                 #.#.#          #.#.#
    126             ####*******######             #.#.#          #.#.#
    127            ...#***.****.*###....          #...#          #...#
    128            ....**********##.....           ###            ###
    129            ....****    *****....
    130              ####        ####
    131            ######        ######
    132 ##############################################################
    133 #...#......#.##...#......#.##...#......#.##------------------#
    134 ###########################################------------------#
    135 #..#....#....##..#....#....##..#....#....#####################
    136 ##########################################    #----------#
    137 #.....#......##.....#......##.....#......#    #----------#
    138 ##########################################    #----------#
    139 #.#..#....#..##.#..#....#..##.#..#....#..#    #----------#
    140 ##########################################    ############
    141 */
  • 相关阅读:
    杂谈
    xss bypass 学习记录
    小结--dns注入
    在CentOS 7 安装没有mysql
    备份WordPress
    php留言
    基于mysq搭建的l许愿墙
    http服务的安装与配置
    centos 7忘记密码重置
    安装centos 7 桌面
  • 原文地址:https://www.cnblogs.com/Yinchen-One/p/9399449.html
Copyright © 2020-2023  润新知