Description
知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴。
ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1。
由于菜肴之间口味搭配的问题,某些菜肴必须在另一些菜肴之前制作,具体的,一共有 M 条形如“i 号菜肴‘必须’先于 j 号菜肴制作”的限制,我们将这样的限制简写为<i,j>。
现在,酒店希望能求出一个最优的菜肴的制作顺序,使得小 A能尽量先吃到质量高的菜肴:
也就是说,(1)在满足所有限制的前提下,1 号菜肴“尽量”优先制作;
(2)在满足所有限制,1号菜肴“尽量”优先制作的前提下,2号菜肴“尽量”优先制作;
(3)在满足所有限制,1号和2号菜肴“尽量”优先的前提下,3号菜肴“尽量”优先制作;
(4)在满足所有限制,1 号和 2 号和 3 号菜肴“尽量”优先的前提下,4 号菜肴“尽量”优先制作;
(5)以此类推。
例1:共4 道菜肴,两条限制<3,1>、<4,1>,那么制作顺序是 3,4,1,2。
例2:共5道菜肴,两条限制<5,2>、 <4,3>,那么制作顺序是 1,5,2,4,3。
例1里,首先考虑 1,因为有限制<3,1>和<4,1>,所以只有制作完 3 和 4 后才能制作 1,而根据(3),3 号又应“尽量”比 4 号优先,所以当前可确定前三道菜的制作顺序是 3,4,1;接下来考虑2,确定最终的制作顺序是 3,4,1,2。
例 2里,首先制作 1是不违背限制的;接下来考虑 2 时有<5,2>的限制,所以接下来先制作 5 再制作 2;接下来考虑 3 时有<4,3>的限制,所以接下来先制作 4再制作 3,从而最终的顺序是 1,5,2,4,3。
现在你需要求出这个最优的菜肴制作顺序。无解输出“Impossible!” (不含引号,首字母大写,其余字母小写)
Input
第一行是一个正整数D,表示数据组数。
接下来是D组数据。
对于每组数据:
第一行两个用空格分开的正整数N和M,分别表示菜肴数目和制作顺序限制的条目数。
接下来M行,每行两个正整数x,y,表示“x号菜肴必须先于y号菜肴制作”的限制。(注意:M条限制中可能存在完全相同的限制)
Output
输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或者”Impossible!”表示无解(不含引号)。
Sample Input
3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3
Sample Output
1 5 3 4 2
Impossible!
1 5 2 4 3
Impossible!
1 5 2 4 3
HINT
【样例解释】
第二组数据同时要求菜肴1先于菜肴2制作,菜肴2先于菜肴3制作,菜肴3先于菜肴1制作,而这是无论如何也不可能满足的,从而导致无解。
100%的数据满足N,M<=100000,D<=3。
题解Here!
一眼看出这是一道拓扑排序题。
然后会发现几分钟码完的$50+$行代码会$WA$。。。
为什么呢?
因为这样求出来的是字典序最小的拓扑序,并不一定是1尽可能在前!
因为字典序是贪心的,如果前面的一位能小就尽可能的小,并不保证1出现尽量靠前。
但是如果建一个反图,求一个反向字典序最大的拓扑序呢?
那么就会有大的数尽量靠前的情况出现,于是交小的数尽量靠后,于是反过来就是小的数尽量靠前了。
于是反着建图+一个大根堆维护就好了。
神奇。。。
附代码:
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<queue> #define MAXN 100010 using namespace std; priority_queue<int> q; int n,m,c; int head[MAXN],indegree[MAXN],ans[MAXN]; struct Edge{ int next,to; }a[MAXN]; inline int read(){ int date=0,w=1;char c=0; while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();} while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();} return date*w; } inline void add(int x,int y){ a[c].to=y;a[c].next=head[x];head[x]=c++; } void work(){ int u,v,num=0,top=0; while(!q.empty())q.pop(); for(int i=1;i<=n;i++)if(!indegree[i]){q.push(i);num++;} while(!q.empty()){ u=q.top(); q.pop(); ans[++top]=u; for(int i=head[u];i;i=a[i].next){ v=a[i].to; indegree[v]--; if(!indegree[v]){ q.push(v); num++; } } } if(num<n)printf("Impossible! "); else{ for(int i=n;i>=1;i--)printf("%d ",ans[i]); printf(" "); } } void init(){ int x,y; c=1; memset(head,0,sizeof(head)); memset(indegree,0,sizeof(indegree)); n=read();m=read(); for(int i=1;i<=m;i++){ x=read();y=read(); add(y,x); indegree[x]++; } } int main(){ int t=read(); while(t--){ init(); work(); } return 0; }