• (数学)Knight's Trip -- hdu -- 3766


    http://acm.hdu.edu.cn/showproblem.php?pid=3766

    Knight's Trip

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 482    Accepted Submission(s): 106


    Problem Description
    In chess, each move of a knight consists of moving by two squares horizontally and one square vertically, or by one square horizontally and two squares vertically. A knight making one move from location (0,0) of an infinite chess board would end up at one of the following eight locations: (1,2), (-1,2), (1,-2), (-1,-2), (2,1), (-2,1), (2,-1), (-2,-1).

    Starting from location (0,0), what is the minimum number of moves required for a knight to get to some other arbitrary location (x,y)?
     
    Input
    Each line of input contains two integers x and y, each with absolute value at most one billion. The integers designate a location (x,y) on the infinite chess board. The final line contains the word END.
     
    Output
    For each location in the input, output a line containing one integer, the minimum number of moves required for a knight to move from (0,0) to (x, y).
     
    Sample Input
    1 2、
    2 4
    END
     
    Sample Output
    1
    2
    /**
    首先,xy的大小排序和转化为都是正数步数不变应该懂吧。
    y=2*x这种情况直接就是(x+y)/3步。
    如果y<2*x但是(x+y)%3==0的话,那么我们可以通过控制(1,2),(2,1)
    两种跳法的次数达到...总数必然是(x+y)/3,然后xy的和对3取余是1的话,
    我们是不是必然可以在(x+y-1)/3步的时候跳到(x,y-1)这个点,但是不能一步
    跳到(x,y),回撤两步到(x-4,y-5)这个点,我们可以用三步跳到(x,y),那么
    就是原先的步数+1。余数为2,就是先跳到(x-1,y-1)这个地方,我们知道(0,0)
    到(1,1)只需要两步,那么(x-1,y-1)到(x,y)也就是原先步数+2.然后考虑y>2*x,
    先把(0,1)的情况特殊处理一下。接着我们可以用x步跳到(x,y),那么原问题就
    转化为(0,0)到(0,y-2*x)。当y-2*x是4的倍数的话我们可以直接(1,2)(-1,2)这个
    跳可以在(y-2*x)/2步到达。余数为1,就是(0,0)到(0,1)的问题,但是这个需要
    三步不是最优的,我们后撤两步变为(0,0)到(0,5),我们可以三步达到,那么就
    是原先的步数加上1就是解。余数为2,我们可以分别跳一次(2,1)(-2,1)到达。
    余数为3,转化为(0,0)到(0,3)的问题我们可以(-1,2)(1,1)(0,3)三步到达。
    以上就是全部情况,o(╯□╰)o,在纸上画画,应该所有在这这几类范围内。
    **/
    
    
    
    #include<stdio.h>
    #include<string.h>
    int main()
    {
        char c[20];
    
        while(scanf("%s", c), strcmp(c, "END"))
        {
            int x, y;
            int k;
    
            sscanf(c, "%d", &x);
            scanf("%d", &y);
    
            if(x<0) x = -x;
            if(y<0) y = -y;
    
            if(y<x) {k=x, x=y, y=k;}
            if(y<=2*x)
            {
                if(x==1 && y==1)
                    printf("2
    ");
                else if(x==2 && y==2)
                    printf("4
    ");
                else
                    printf("%d
    ", (x+y)/3+(x+y)%3);
            }
            else
            {
                int ans = x;
                int c=(y-2*x)%4;
    
                ans += c;
                ans += (y-2*x-c)/2;
    
                if(y==1 && x==0)
                   ans = 3;
    
                printf("%d
    ", ans);
            }
        }
        return 0;
    }
    勿忘初心
  • 相关阅读:
    Gym
    UVALive
    UVALive
    UVALive
    UVALive
    Codeforces Round #367 (Div. 2) D. Vasiliy's Multiset Trie
    HDU 5816 Hearthstone 概率dp
    欧几里德与扩展欧几里德算法(转)
    差分约束系统详解(转)
    2016年第七届蓝桥杯C/C++程序设计本科B组决赛
  • 原文地址:https://www.cnblogs.com/YY56/p/4954115.html
Copyright © 2020-2023  润新知