链接:
https://codeforces.com/contest/1271/problem/E
题意:
At first, let's define function f(x) as follows:
f(x)={x2x−1if x is evenotherwise
We can see that if we choose some value v and will apply function f to it, then apply f to f(v), and so on, we'll eventually get 1. Let's write down all values we get in this process in a list and denote this list as path(v). For example, path(1)=[1], path(15)=[15,14,7,6,3,2,1], path(32)=[32,16,8,4,2,1].
Let's write all lists path(x) for every x from 1 to n. The question is next: what is the maximum value y such that y is contained in at least k different lists path(x)?
Formally speaking, you need to find maximum y such that |{x | 1≤x≤n,y∈path(x)}|≥k.
思路:
假设当前值为x,是奇数,则可以从x2, x2+1,推出,接着是x4,x4+1,x4+2,x4+3...
如果是偶数,要多计算x+1。
然后可以二分枚举,但是没搞懂为什么要分奇偶数。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL n, k;
LL Check(LL x)
{
LL cnt = 1LL, tmp = 1LL;
while(x*2+tmp*2-1<= n)
{
x *= 2;
tmp *= 2;
cnt += tmp;
}
cnt += max(0LL, n-x*2+1);
return cnt;
}
int main()
{
while(cin >> n >> k)
{
LL l = 0, r = (n-1)/2+1;
while(r-l>1)
{
LL mid = (l+r)/2;
if (Check(2*mid+1) >= k)
l = mid;
else
r = mid;
}
LL ans = 2*l+1;
l = 0, r = n/2+1;
while(r-l>1)
{
LL mid = (l+r)/2;
if (Check(2*mid)+Check(mid*2+1) >= k)
l = mid;
else
r = mid;
}
cout << max(ans, 2*l) << endl;
}
return 0;
}