• LightOJ


    链接:

    https://vjudge.net/problem/LightOJ-1095

    题意:

    Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N natural numbers. You can rearrange this sequence in many ways. There will be a total of N! arrangements. You have to calculate the number of arrangement of first N natural numbers, where in first M positions; exactly K numbers are in their initial position.

    For Example, N = 5, M = 3, K = 2

    You should count this arrangement {1, 4, 3, 2, 5}, here in first 3 positions 1 is in 1st position and 3 in 3rd position. So exactly 2 of its first 3 are in there initial position.

    But you should not count {1, 2, 3, 4, 5}.

    思路:

    错排:
    F[n] = (n-1)*(F[n-1]+F[n-2]),F[i]为长度i的错排种类。
    递推:
    第一步,首元素插到剩下n-1个元素位置k。
    第二步,可以选择将k插到首位置,此时就剩下n-2个,即F[n-2]
    可以不插到首位置,将原本k位置元素删除,k插到首元素位置,看成k位置,则为F[n-1]

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<utility>
    
    using namespace std;
    typedef long long LL;
    const int INF = 1e9;
    
    const int MAXN = 1e3+10;
    const int MOD = 1e9+7;
    
    int n, k, m;
    LL P[MAXN], F[MAXN];
    
    LL PowMod(LL a, LL b)
    {
        LL res = 1;
        while(b)
        {
            if (b&1)
                res = (1LL*res*a)%MOD;
            a = (1LL*a*a)%MOD;
            b >>= 1;
        }
        return res;
    }
    
    LL Com(LL a, LL b)
    {
        if (b == 0 || a == b)
            return 1;
        return 1LL*P[a]*PowMod(P[b]*P[a-b]%MOD, MOD-2)%MOD;
    }
    
    void Init()
    {
        P[1] = 1;
        for (int i = 2;i < MAXN;i++)
            P[i] = 1LL*i*P[i-1]%MOD;
        F[1] = 0, F[0] = F[2] = 1;
        for (int i = 3;i < MAXN;i++)
            F[i] = 1LL*(i-1)*((F[i-1]+F[i-2])%MOD)%MOD;
    }
    
    int main()
    {
        Init();
        int cnt = 0;
        int t;
        scanf("%d", &t);
        while(t--)
        {
            printf("Case %d:", ++cnt);
            scanf("%d%d%d", &n, &m, &k);
            LL res = 0LL;
            for (int i = 0;i <= n-m;i++)
                res = ((res + 1LL*Com(n-m, i)*F[n-k-i]%MOD)%MOD+MOD)%MOD;
            res = 1LL*res*Com(m, k)%MOD;
            printf(" %lld
    ", res);
        }
        
        return 0;
    }
    
  • 相关阅读:
    用Apache Kafka构建流数据平台
    kafka与传统的消息中间件对比
    Azkaban简介和使用
    kettle初探
    less命令
    spring扩展点之二:spring中关于bean初始化、销毁等使用汇总,ApplicationContextAware将ApplicationContext注入
    Spring 注释标签@Resource @Autowired 和@Inject的区别
    【MyEclipse 2015】 逆向破解实录系列【2】(纯研究)
    HDOJ 5073 Galaxy 数学 贪心
    windows 8.0上eclipse 4.4.0 配置centos 6.5 上的hadoop2.2.0开发环境
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11886546.html
Copyright © 2020-2023  润新知