• 级数判敛--转自高教


     

     A  无穷处可能存在瑕点,此时p=1,q≤1,所以发散

     B  无穷处可能存在瑕点,此时p=1,q=1,发散

     C  无穷处可能存在瑕点,此时p=1,q=2,收敛

     D  无穷处可能存在瑕点,此时p=1,q=1/2,发散

     A 0处可能存在瑕点,x->0,等价于 1/x,所以发散

     A 无穷处可能存在瑕点,p < 1,发散

     B 无穷处可能存在瑕点,p = 1,q <= 1,发散

     C 无穷处可能存在瑕点,p=1,q=1,发散

     D 分部积分计算

     

     分部积分计算

     

     A 伽马函数

     B 凑微分直接计算

     C 凑微分直接计算

     D 凑微分直接计算

    1处可能有瑕点,所以需要0 < α - 1 < 1,无穷处可能有瑕点,p = 1,需要 α + 1 > 1,取交集,D

     

     0处可能有瑕点,0 < a < 1,无穷处可能有瑕点,a + b > 1

     

     无穷处可能有瑕点,1 - p + 1 > 1,p < 1

     

     第一个函数在∞处可能有瑕点,第二个函数在1处可能有瑕点,x的次方数是1,p-1 < 1收敛

     

     二重积分中值定理

     

     A 可以用积分判敛法,x比3^x趋向于∞速度慢

     B n->∞,1 / n^3/2,收敛

     C 分开两部分,前半部分,交错级数审敛法,后半部分 lnx < x,1 / lnn > 1/x,发散

     D 把阶乘展开,1/n * 2/n * 3/n *... * n / n,收敛

    第一个级数,n->∞,级数~1 / n^(α - 1/2),α - 1/2 > 1,第二个级数条件收敛, 0 < 2 - α <= 1

     

     sin,有界震荡,合并以后,绝对收敛

     分开看,前半部分,~ 1/n,后半部分,等价于 k / n,所以k=-1

     

     an < 1/n,若 an = 1/2n,AC都不对,B 选项,若奇数项和偶数项通项不同,B不对

    论读书
    睁开眼,书在面前
    闭上眼,书在心里
  • 相关阅读:
    python 基于os模块的常用操作
    python 文件的读写
    Spring Boot 2.0(五):Docker Compose + Spring Boot + Nginx + Mysql 实践
    Docker(四):Docker 三剑客之 Docker Compose
    Docker(三):Dockerfile 命令详解
    Docker(二):Dockerfile 使用介绍
    Docker(一):Docker入门教程
    虚拟机vmware centos7 扩展磁盘空间
    那些年我们遇到的坑(1)-Description Resource Path Location Type Archive for required library
    RPM安装命令总结
  • 原文地址:https://www.cnblogs.com/YC-L/p/14141665.html
Copyright © 2020-2023  润新知