• codeforces 528D Fuzzy Search


    Leonid works for a small and promising start-up that works on decoding the human genome. His duties include solving complex problems of finding certain patterns in long strings consisting of letters 'A', 'T', 'G' and 'C'.

    Let's consider the following scenario. There is a fragment of a human DNA chain, recorded as a string S. To analyze the fragment, you need to find all occurrences of string T in a string S. However, the matter is complicated by the fact that the original chain fragment could contain minor mutations, which, however, complicate the task of finding a fragment. Leonid proposed the following approach to solve this problem.

    Let's write down integer k ≥ 0 — the error threshold. We will say that string T occurs in string S on position i (1 ≤ i ≤ |S| - |T| + 1), if after putting string T along with this position, each character of string T corresponds to the some character of the same value in string S at the distance of at most k. More formally, for any j (1 ≤ j ≤ |T|) there must exist such p (1 ≤ p ≤ |S|), that |(i + j - 1) - p| ≤ k and S[p] = T[j].

    For example, corresponding to the given definition, string "ACAT" occurs in string "AGCAATTCAT" in positions 2, 3 and 6.

    Note that at k = 0 the given definition transforms to a simple definition of the occurrence of a string in a string.

    Help Leonid by calculating in how many positions the given string T occurs in the given string S with the given error threshold.

    Input

    The first line contains three integers |S|, |T|, k (1 ≤ |T| ≤ |S| ≤ 200 000, 0 ≤ k ≤ 200 000) — the lengths of strings S and T and the error threshold.

    The second line contains string S.

    The third line contains string T.

    Both strings consist only of uppercase letters 'A', 'T', 'G' and 'C'.

    Output

    Print a single number — the number of occurrences of T in S with the error threshold k by the given definition.

    Examples
    Input
    Copy
    10 4 1
    AGCAATTCAT
    ACAT
    Output
    3
    Note

    If you happen to know about the structure of the human genome a little more than the author of the problem, and you are not impressed with Leonid's original approach, do not take everything described above seriously.

    传送门

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<cmath>
     6 #include<complex>
     7 using namespace std;
     8 typedef long long lol;
     9 typedef complex<double>dob;
    10 double pi=acos(-1.0);
    11 const int NN=800001;
    12 dob a[NN],b[NN];
    13 char ch[4];
    14 int R[NN],lg;
    15 char s[200001],t[200001];
    16 int M,inf=2e9,ans[NN],res;
    17 void FFT(dob *A,int len,int flag)
    18 {int i,j,k;
    19   for (i=0;i<len;i++)
    20     if (i<R[i]) swap(A[i],A[R[i]]);
    21   for (i=1;i<len;i<<=1)
    22     {
    23       dob wn(cos(pi/i),sin(flag*pi/i)),x,y;
    24       for (j=0;j<len;j+=(i<<1))
    25     {
    26       dob w(1,0);
    27       for (k=0;k<i;k++,w*=wn)
    28         {
    29           x=A[j+k];y=w*A[j+k+i];
    30           A[j+k]=x+y;
    31           A[j+k+i]=x-y;
    32         }
    33     }
    34     }
    35 }
    36 int main()
    37 {int i,n,m,k,p,pos;
    38   cin>>n>>m>>k;
    39   ch[0]='A';ch[1]='T';ch[2]='C';ch[3]='G';
    40   scanf("%s",s);
    41   scanf("%s",t);
    42   reverse(t,t+m);
    43   M=n+m;int len=1;
    44   while (len<=M) len*=2,lg++;
    45   for (i=0;i<=len;i++)
    46     R[i]=(R[i>>1]>>1)|((i&1)<<(lg-1));
    47   for (p=0;p<4;p++)
    48     {
    49       memset(a,0,sizeof(a));
    50       memset(b,0,sizeof(b));
    51       pos=-inf;
    52       for (i=0;i<n;i++)
    53     {
    54       if (s[i]==ch[p]) pos=i;
    55       if (i-pos<=k) a[i]=1;
    56     }
    57       pos=inf;
    58       for (i=n-1;i>=0;i--)
    59     {
    60       if (s[i]==ch[p]) pos=i;
    61       if (pos-i<=k) a[i]=1;
    62     }
    63       for (i=0;i<m;i++)
    64     {
    65       if (t[i]==ch[p]) b[i]=1;
    66     }
    67       FFT(a,len,1);FFT(b,len,1);
    68       for (i=0;i<len;i++)
    69     a[i]=a[i]*b[i];
    70       FFT(a,len,-1);
    71       for (i=0;i<len;i++)
    72     ans[i]+=((int)(a[i].real()/len+0.5));
    73     }
    74   for (i=0;i<len;i++)
    75     if (ans[i]==m) res++;
    76   cout<<res;
    77 }
  • 相关阅读:
    CoreSeek Sphinx 安装
    【Asp.net入门2-01】C#基本功能
    【Asp.net入门16】第一个ASP.NET 应用程序-总结
    【Asp.net入门15】第一个Asp.net应用程序-输入验证
    【Asp.net入门11】第一个ASP.NET 应用程序-创建摘要视图
    【Asp.net入门09】第一个ASP.NET 应用程序-处理窗体(1)
    【Asp.net入门08】第一个Asp.net应用程序-创建窗体并设置其样式
    【Asp.net入门07】第一个ASP.NET 应用程序-创建数据模型和存储库
    【Asp.net入门06】第一个ASP.NET 应用程序-案例说明
    【Asp.net入门05】第一个ASP.NET 应用程序-测试Asp.net程序
  • 原文地址:https://www.cnblogs.com/Y-E-T-I/p/8716387.html
Copyright © 2020-2023  润新知