Problem Description
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。
m=n=p=0则表示输入结束。
Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
Sample Input
1 1 1
1 4 1
0 0 0
Sample Output
Fibo
Nacci
这是一个类似Nim游戏的游戏
考虑用SG函数
有一个结论,当前状态的SG函数集合{a1,a2,a3}
满足a1^a2^a3=0时必败
否则必胜
证明:http://blog.csdn.net/strangedbly/article/details/51137432
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6 using namespace std; 7 int f[18],n,m,p,SG[1002],vis[1002]; 8 void getSG() 9 {int i,j; 10 memset(SG,0,sizeof(SG)); 11 for (i=1;i<=1000;i++) 12 { 13 memset(vis,0,sizeof(vis)); 14 for (j=1;j<=16;j++) 15 if (i-f[j]>=0) 16 vis[SG[i-f[j]]]=1; 17 else break; 18 for (j=0;;j++) 19 if (vis[j]==0) 20 { 21 SG[i]=j; 22 break; 23 } 24 } 25 } 26 int main() 27 {int i,j; 28 f[1]=1;f[0]=1; 29 for (i=2;i<=16;i++) 30 f[i]=f[i-1]+f[i-2]; 31 getSG(); 32 while (cin>>n>>m>>p&&(n||m||p)) 33 { 34 if (SG[n]^SG[m]^SG[p]) printf("Fibo "); 35 else printf("Nacci "); 36 } 37 }