题目背景
无
题目描述
给定一长度为n的动态序列,请编写一种数据结构,要求支持m次操作,包括查询序列中一闭区间中所有数的GCD,与对一闭区间中所有数加上或减去一个值。
输入输出格式
输入格式:
第1行两个数n,m,表示序列长度和操作次数。
第2行n个数ai,表示给定序列。
第3行至第m+2行,每行3~4个数:
(1) 1 x y k 表示将[x,y]上的所有数加上k。
(2) 2 x y 表示询问[x,y]上所有数的GCD。
输出格式:
对所有操作2,输出一个数,表示询问结果。
输入输出样例
输入样例#1:
7 3
4 8 2 6 5 7 10
2 1 4
1 2 3 7
2 2 3
说明
定义:a,b∈Z时,gcd(a,b)=gcd(abs(a),abs(b))
对于30%的数据,n,m<=1000。
对于90%的数据,n,m<=100000。
对于100%的数据,n,m<=200000,ai<=1e7(初始),abs(k)<=1e7。
题解:
如果题目要求改为只支持区间查询,那么线段树或ST表都可以很方便地实现。进一步思考,区间修改无法用普通线段树实现的根本原因在于对[l,r]修改后[l,r]的结果无法O(1)计算出来。
如果区间修改改为单点修改,则可以用线段树暴力log(n)修改。
此处证明一个引理:gcd(a1,a2,a3,...,ai)=gcd(a1,a2-a1,a3-a2,...ai-ai-1).
设S为ai的公因数集合,T为ai-ai-1的公因数集合
设p为ai的任意一个公因数,则有p|ai,由整除的性质知p|ai-ai-1,则p一定是ai-ai-1的公因数,所以S是T的子集。
同理,设q为ai-ai-1的任意一个公因数,运用同样的性质可知q一定是ai的公因数,所以T是S的子集。
综上,S=T,所以max{S}=max{T},即gcd(a1,a2,a3,...,ai)=gcd(a1,a2-a1,a3-a2,...ai-ai-1).
所以我们将原数组a进行差分,设差分后数组为d,区间查询[l,r]则转化为gcd(gcd(d[l+1,r]),a[l]);差分后区间修改变为单点修改,可用线段树暴力实现。
具体操作:将原数组进行差分,用一棵支持单点修改的线段树维护gcd,将差分数组用一个树状数组维护前缀和(用来求出变化后的a[l],也可以合并在线段树中)。
注意:差分时对区间[l,r]涉及到对r+1的操作,为防止溢出,线段树区间增大至[1,n+1]。
代码如下:
#include<bits/stdc++.h>
#define LL long long
#define lowbit(x) x&(-x)
using namespace std;
const int maxn=2e5+10;
LL node[4*maxn],a[maxn],c[maxn],d[maxn];
int n,m;LL ans;
LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);}
void pushup(int x){node[x]=abs(gcd(node[x<<1],node[x<<1|1]));}
void build(int x,int l,int r)
{
if(l==r){node[x]=d[l];return;}
int mid=(l+r)>>1;
build(x<<1,l,mid);build(x<<1|1,mid+1,r);
pushup(x);
}
void change(int x,int l,int r,int pos,int d)
{
if(l==r){node[x]+=d;return;}
int mid=(l+r)>>1;
if(pos<=mid){change(x<<1,l,mid,pos,d);}
else{change(x<<1|1,mid+1,r,pos,d);}
pushup(x);
}
void query(int x,int l,int r,int sj,int tj)
{
if(sj<=l&&r<=tj){ans=abs(gcd(node[x],ans));return;}
int mid=(l+r)>>1;
if(sj<=mid){query(x<<1,l,mid,sj,tj);}
if(mid+1<=tj){query(x<<1|1,mid+1,r,sj,tj);}
pushup(x);
}
void add(int x,int d)
{
int i;
for(i=x;i<=n;i+=lowbit(i)){c[i]+=d;}
}
LL sum(int x)
{
int i;LL ans=0;
for(i=x;i>=1;i-=lowbit(i)){ans+=c[i];}
return ans;
}
int main()
{
int i,j,flag,l,r,dlt;
cin>>n>>m;
for(i=1;i<=n;i++){scanf("%lld",&a[i]);}
n++;
for(i=1;i<=n;i++){d[i]=a[i]-a[i-1];add(i,d[i]);}
build(1,1,n);