• Self Numbers


    Self Numbers

    Time Limit : 20000/10000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
    Total Submission(s) : 34   Accepted Submission(s) : 16
    Problem Description
    In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ... The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97. Write a program to output all positive self-numbers less than or equal 1000000 in increasing order, one per line.
     
    Sample Output
    1 3 5 7 9 20 31 42 53 64 | | <-- a lot more numbers | 9903 9914 9925 9927 9938 9949 9960 9971 9982 9993 | | |
     
    Source
    Mid-Central USA 1998
     
     1 #include <stdio.h>
     2 #include <string.h>
     3 int sum[1000005]={0};
     4 int All_sum(int n)
     5 {
     6     if (n<10)
     7         return n;
     8     else
     9         return (n%10)+All_sum(n/10);
    10  }
    11 
    12 void num(int i,int n)
    13 {
    14     int j,k=i-9*n,tmp;
    15     if(k<0)
    16         k=1;
    17     while(1)
    18     {
    19         tmp=k;
    20         if(k>i)
    21             return 0;
    22         tmp+=All_sum(k);
    23         if(tmp==i)
    24         {sum[tmp]+=1;return 0;}
    25         k++;
    26     }
    27     return 0;
    28 }
    29 
    30 int main()
    31 {
    32     int i,n,Len,k,a,j;
    33     for(i=1;i<=1000000;i++)
    34     {
    35         if(i<10)n=1;else if(i<100)n=2; else if(i<1000)n=3; else if(i<10000)n=4; else if(i<100000)n=5; else if(i<1000000)n=6;
    36         if(sum[i]==0)
    37            {
    38                num(i,n);
    39            }
    40         if(sum[i]==0)
    41            printf("%d
    ",i);
    42     }
    43     return 0;
    44 }
    View Code
    转载请备注:
    **************************************
    * 作者: Wurq
    * 博客: https://www.cnblogs.com/Wurq/
    * Gitee: https://gitee.com/wurq
    **************************************
  • 相关阅读:
    luogu P2439 [SDOI2005]阶梯教室设备利用
    bzoj1559: [JSOI2009]密码
    bzoj3172: [Tjoi2013]单词
    后缀树简短实现
    [APIO2010]特别行动队 --- 斜率优化DP
    [APIO2014]序列分割 --- 斜率优化DP
    [HNOI2012]集合选数 --- 状压DP
    UVA11107 Life Forms --- 后缀数组
    [TJOI2017]DNA --- 后缀数组
    [NOI2014]购票 --- 斜率优化 + 树形DP + 数据结构
  • 原文地址:https://www.cnblogs.com/Wurq/p/3750305.html
Copyright © 2020-2023  润新知