Self Numbers
Time Limit : 20000/10000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 34 Accepted Submission(s) : 16
Problem Description
In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ... The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97. Write a program to output all positive self-numbers less than or equal 1000000 in increasing order, one per line.
Sample Output
1 3 5 7 9 20 31 42 53 64 | | <-- a lot more numbers | 9903 9914 9925 9927 9938 9949 9960 9971 9982 9993 | | |
Source
Mid-Central USA 1998
1 #include <stdio.h> 2 #include <string.h> 3 int sum[1000005]={0}; 4 int All_sum(int n) 5 { 6 if (n<10) 7 return n; 8 else 9 return (n%10)+All_sum(n/10); 10 } 11 12 void num(int i,int n) 13 { 14 int j,k=i-9*n,tmp; 15 if(k<0) 16 k=1; 17 while(1) 18 { 19 tmp=k; 20 if(k>i) 21 return 0; 22 tmp+=All_sum(k); 23 if(tmp==i) 24 {sum[tmp]+=1;return 0;} 25 k++; 26 } 27 return 0; 28 } 29 30 int main() 31 { 32 int i,n,Len,k,a,j; 33 for(i=1;i<=1000000;i++) 34 { 35 if(i<10)n=1;else if(i<100)n=2; else if(i<1000)n=3; else if(i<10000)n=4; else if(i<100000)n=5; else if(i<1000000)n=6; 36 if(sum[i]==0) 37 { 38 num(i,n); 39 } 40 if(sum[i]==0) 41 printf("%d ",i); 42 } 43 return 0; 44 }