• [Usaco2011 Feb]Generic Cow Protests


    Description

    Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and
    numbered 1..N. The cows are conducting another one of their strange
    protests, so each cow i is holding up a sign with an integer A_i
    (-10,000 <= A_i <= 10,000).

    FJ knows the mob of cows will behave if they are properly grouped
    and thus would like to arrange the cows into one or more contiguous
    groups so that every cow is in exactly one group and that every
    group has a nonnegative sum.

    Help him count the number of ways he can do this, modulo 1,000,000,009.

    By way of example, if N = 4 and the cows' signs are 2, 3, -3, and
    1, then the following are the only four valid ways of arranging the
    cows:

    (2 3 -3 1)
    (2 3 -3) (1)
    (2) (3 -3 1)
    (2) (3 -3) (1)

    Note that this example demonstrates the rule for counting different
    orders of the arrangements.

    给出n个数,问有几种划分方案(不能改变数的位置),使得每组中数的和大于等于0。输出方案数除以 1000000009的余数。

    Input

    • Line 1: A single integer: N
    • Lines 2..N + 1: Line i + 1 contains a single integer: A_i

    Output

    • Line 1: A single integer, the number of arrangements modulo
      1,000,000,009.

    Sample Input

    4

    2

    3

    -3

    1

    Sample Output

    4


    本题很容易想到一个N^2 DP,即 $$ f(i)=sum_{j=1}^{i-1} f(j),(sum[i]-sum[j]>=0)$$ 不过肯定会T就是了。我们考虑每次转移只考虑到sum[i]与sum[j]的大小关系,于是我们只要将前缀和离散化一下然后丢到树状数组里处理下就好了

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define lowbit(x) ((x)&(-x))
    #define inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline int read(){
        int x=0,f=1;char ch=getchar();
        for (;ch<'0'||ch>'9';ch=getchar())    if (ch=='-')    f=-1;
        for (;ch>='0'&&ch<='9';ch=getchar())  x=(x<<1)+(x<<3)+ch-'0';
        return x*f;
    }
    inline void print(int x){
        if (x>=10)     print(x/10);
        putchar(x%10+'0');
    }
    const int N=1e5,mod=1e9+9;
    int tree[N+10],sum[N+10],f[N+10];
    int n,T,ans;
    struct AC{
        int x,ID;
        void join(int a,int b){x=a,ID=b;}
        bool operator <(const AC &a)const{return x!=a.x?x<a.x:ID<a.ID;}
    }A[N+10];
    void insert(int x,int v){for (;x<=n;x+=lowbit(x))    tree[x]=(tree[x]+v)%mod;}
    int query(int x){
        int res=0;
        for (;x;x-=lowbit(x))   res=(res+tree[x])%mod;
        return res;
    }
    int main(){
        n=read();
        for (int i=1;i<=n;i++)   A[i].join(A[i-1].x+read(),i),f[i]=(A[i].x>=0);
        sort(A+1,A+1+n);
        for (int i=1;i<=n;i++)   sum[A[i].ID]=i;
        for (int i=1;i<=n;i++)   insert(sum[i],f[i]=(f[i]+query(sum[i]))%mod);
        printf("%d
    ",f[n]);
        return 0;
    }
    
  • 相关阅读:
    面向对象(接口 ,多态)
    面向对象(继承,重写,this,super,抽象类)
    IO(字符流 字符缓冲流)
    ArrayList集合
    字符串常用API
    面向对象(类,封装,this,构造方法)
    不同类型问题代码训练
    java中的方法
    04慕课网《进击Node.js基础(一)》HTTP讲解
    《JavaScript设计模式与开发实践》——第3章 闭包和高阶函数
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/8414426.html
Copyright © 2020-2023  润新知