• [HDU5451]Best Solver


    Description
    The so-called best problem solver can easily solve this problem, with his/her childhood sweetheart.

    It is known that (y=(5+2sqrt{6})^{1+2x}).
    For a given integer (x (0leqslant x < 2^{32})) and a given prime number (M (Mleqslant 46337)), print (lfloor y floor\%M). ((lfloor y floor) means the integer part of (y))

    Input
    An integer (T (1<Tleqslant 1000)), indicating there are (T) test cases.
    Following are (T) lines, each containing two integers (x) and (M), as introduced above.

    Output
    The output contains exactly (T) lines.
    Each line contains an integer representing (lfloor y floor \%M).

    Sample Input

    7
    0 46337
    1 46337
    3 46337
    1 46337
    21 46337
    321 46337
    4321 46337
    

    Sample Output

    Case #1: 97
    Case #2: 969
    Case #3: 16537
    Case #4: 969
    Case #5: 40453
    Case #6: 10211
    Case #7: 17947
    

    (a=5+2sqrt6)(b=5-2sqrt6),则(a,b)为方程(x^2-10x+1)的两根,根据此特征方程可导出数列(F_n=10F_{n-1}-F_{n-2}),且有(F_n=c_1a^n+c_2b^n),不妨令(c_1=c_2=1),则可得(F_1=10,F_2=98)

    因为 (F_n=a^n+b^n),又因为(0<b<1),故(0<b^n<1),所以可得(lfloor a^n floor=F_n-1)

    根据之前的递推式,我们可以用矩阵乘法求解(F_n),不过因为指数是(2^x+1),取完对数后依然有(O(x))级别的复杂度,故直接矩乘不可行

    考虑到结果需要对(M)取模,且(F_n)是靠前两个数推导而出,故数列在循环(M*M)次后必然会出现循环节,则复杂度可以降至(O(T2^3log_2(M^2)))

    /*program from Wolfycz*/
    #include<map>
    #include<cmath>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define Fi first
    #define Se second
    #define ll_inf 1e18
    #define MK make_pair
    #define sqr(x) ((x)*(x))
    #define pii pair<int,int>
    #define int_inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline char gc(){
    	static char buf[1000000],*p1=buf,*p2=buf;
    	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    template<typename T>inline T frd(T x){
    	int f=1; char ch=gc();
    	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')    f=-1;
    	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    template<typename T>inline T read(T x){
    	int f=1; char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x<0)	putchar('-'),x=-x;
    	if (x>9)	print(x/10);
    	putchar(x%10+'0');
    }
    const int N=2;
    int P;
    struct Matrix{
    	int V[N][N];
    	Matrix(){memset(V,0,sizeof(V));}
    	void clear(){memset(V,0,sizeof(V));}
    	void init(){
    		clear();
    		for (int i=0;i<N;i++)
    			V[i][i]=1;
    	}
    };
    Matrix operator *(Matrix x,Matrix y){
    	Matrix z;
    	for (int i=0;i<N;i++)
    		for (int j=0;j<N;j++)
    			for (int k=0;k<N;k++)
    				z.V[i][k]=(z.V[i][k]+1ll*x.V[i][j]*y.V[j][k])%P;
    	return z;
    }
    Matrix mlt(Matrix a,int b){
    	Matrix res; res.init();
    	for (;b;b>>=1,a=a*a)	if (b&1)	res=res*a;
    	return res;
    }
    int mlt(int a,int b,int Mod){
    	int res=1;
    	for (;b;b>>=1,a=1ll*a*a%Mod)	if (b&1)	res=1ll*res*a%Mod;
    	return res;
    }
    int main(){
    //	freopen(".in","r",stdin);
    //	freopen(".out","w",stdout);
    	Matrix Trans;
    	Trans.V[0][0]=10;
    	Trans.V[0][1]= 1;
    	Trans.V[1][0]=-1;
    	int T=read(0);
    	for (int Case=1;Case<=T;Case++){
    		int n=read(0); P=read(0);
    		int m=1+mlt(2,n,P*P-1);
    		Matrix Ans;
    		Ans.V[0][0]=2%P,Ans.V[0][1]=10%P;
    		Ans=Ans*mlt(Trans,m);
    		printf("Case #%d: %d
    ",Case,(Ans.V[0][0]-1+P)%P);
    	}
    	return 0;
    }
    
    作者:Wolfycz
    本文版权归作者和博客园共有,欢迎转载,但必须在文章开头注明原文出处,否则保留追究法律责任的权利
  • 相关阅读:
    Cobbler-自动化部署神器
    ssh,公钥和私钥,远程复制
    VIM文本替换命令
    #!/usr/bin/env bash和#!/usr/bin/bash的比较
    [PXE] Linux(centos6)中PXE 服务器搭建,PXE安装、启动及PXE理论详解
    mount命令中offset参数的意义
    ironic+nova详解
    【ironic】ironic介绍与原理
    在进行商业运算时解决BigDecimal的精度丢失问题
    后台商品搜索功能开发SQL
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/14931362.html
Copyright © 2020-2023  润新知