• [HDU1724]Ellipse


    Description
    Math is important!! Many students failed in 2+2’s mathematical test, so let's AC this problem to mourn for our lost youth..
    Look this sample picture:

    image.png

    A ellipses in the plane and center in point O. the L,R lines will be vertical through the X-axis. The problem is calculating the blue intersection area. But calculating the intersection area is dull, so I have turn to you, a talent of programmer. Your task is tell me the result of calculations.(defined PI=3.14159265 , The area of an ellipse A=PI*a*b )

    Input
    Input may contain multiple test cases. The first line is a positive integer N, denoting the number of test cases below. One case One line. The line will consist of a pair of integers a and b, denoting the ellipse equationimage.png, A pair of integers l and r, mean the L is (l, 0) and R is (r, 0). (-a <= l <= r <= a).

    Output
    For each case, output one line containing a float, the area of the intersection, accurate to three decimals after the decimal point.

    Sample Input

    2
    2 1 -2 2
    2 1 0 2
    

    Sample Output

    6.283
    3.142
    

    虽然说是Simpson积分……不过直接用普通的积分也是可行的

    由于椭圆上下对称,故我们对上半部分积分即可

    (frac{x^2}{a^2}+frac{y^2}{b^2}=1) 化简得 (y=bsqrt{1-frac{x^2}{a^2}}) ,将(a)提出来得 (y=frac{b}{a}sqrt{a^2-x^2})

    我们考虑求 (intsqrt{a^2-x^2} dx),令 (x=asin t),则 (dx=acos t dt)

    故原式化为 (intsqrt{a^2-a^2sin^2t} acos t dt=int a^2cos^2t dt=frac{a^2}{4}int (cos 2t+1) d(2t)=frac{a^2}{4}(sin 2t+2t)+C)

    再化简得 (frac{asin t}{2}acos t+frac{a^2t}{2}+C)

    (x=asin t) 代入得 (frac{x}{2}sqrt{a^2-x^2}+frac{a^2}{2}arcsin(frac{x}{a})+C)

    最后原式需要计算(S=int_l^ry(x) dx),我们将(y(x)=frac{b}{a}sqrt{a^2-x^2})代入,再根据上述推导过程推导即可

    也可以利用椭圆的左右对称,直接从0积分到(l)(r),然后根据其位置加减即可

    /*program from Wolfycz*/
    #include<map>
    #include<cmath>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define Fi first
    #define Se second
    #define ll_inf 1e18
    #define MK make_pair
    #define sqr(x) ((x)*(x))
    #define pii pair<int,int>
    #define int_inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline char gc(){
    	static char buf[1000000],*p1=buf,*p2=buf;
    	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    template<typename T>inline T frd(T x){
    	int f=1; char ch=gc();
    	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')    f=-1;
    	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    template<typename T>inline T read(T x){
    	int f=1; char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x<0)	putchar('-'),x=-x;
    	if (x>9)	print(x/10);
    	putchar(x%10+'0');
    }
    double F(int a,int x){return x/2.0*sqrt(sqr(a)-sqr(x))+sqr(a)/2.0*asin(1.0*x/a);}
    int main(){
    	int T=read(0);
    	while (T--){
    		int a=read(0),b=read(0),l=read(0),r=read(0);
    		double resl=F(a,abs(l)),resr=F(a,abs(r)),Ans=0;
    //		printf("%lf %lf
    ",resl,resr);
    		if (l*r>0)	Ans=abs(resl-resr);
    		else	Ans=resl+resr;
    		printf("%.3lf
    ",2.0*b/a*Ans);
    	}
    	return 0;
    }
    
    作者:Wolfycz
    本文版权归作者和博客园共有,欢迎转载,但必须在文章开头注明原文出处,否则保留追究法律责任的权利
  • 相关阅读:
    SQL Server数据库文件存储目录转移
    窗口管理器 dwm安装
    arch linux 安装
    如何在windows 2003(虚拟主机)上面部署MVC3
    .NET接入微信支付(一)JS API接入 V3
    MongoDB部署实战(一)MongoDB在windows平台分片集群部署
    .NET接入UnionPay银联支付(一)手机wap支付
    cas4.2.7 集群服务搭建
    JAVA计算整数的位数
    JAVA求解质因数
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/14931167.html
Copyright © 2020-2023  润新知