• [HDU6304]Chiaki Sequence Revisited


    Description
    Chiaki is interested in an infinite sequence (a_1,a_2,a_3,...) which is defined as follows:

    [a_n=egin{cases} 1 &,n=1,2\a_{n−a_{n−1}}+a_{n−1−a_{n−2}}&,ngeqslant3end{cases} ]

    Chiaki would like to know the sum of the first (n) terms of the sequence, i.e. (sumlimits_{i=1}^na_i). As this number may be very large, Chiaki is only interested in its remainder modulo ((10^9+7)).

    Input
    There are multiple test cases. The first line of input contains an integer (T (1leqslant Tleqslant 10^5)), indicating the number of test cases. For each test case:
    The first line contains an integer (n (1leqslant nleqslant 10^{18})).

    Output
    For each test case, output an integer denoting the answer.

    Sample Input

    10
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    

    Sample Output

    1
    2
    4
    6
    9
    13
    17
    21
    26
    32
    

    遇到看不懂的数列,首先就应该根据它的构造方法打表找规律

    通过打表可得数列前几项为1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,...容易发现,在除去最开始的1后,记(c_i)(i)出现的次数,则有(c_{2k}=c_k+1,c_{2k+1}=1)

    我们记(s_k=sumlimits_{i=1}^kc_i),则有

    (s_{2k}=(c_1+c_3+....+c_{2k-1})+(c_2+c_4+...+c_{2k})=s_k+2k)

    (s_{2k+1}=s_{2k}+c_{2k+1}=s_k+2k+1)

    故可得(s_n)的递推式(s_n=s_{lfloorfrac{n}{2} floor}+n),此时(s_n)表示1~n在序列中总共出现的次数

    题目要求(S=sumlimits_{i=1}^na_i),我们结合打表的数据,对其进行分组可得(S=sumlimits_{i=1}^n{i}+sumlimits_{i=1}^{lfloorfrac{n}{2} floor}2 imes i+sumlimits_{i=1}^{lfloorfrac{n}{2^2} floor}2^2 imes i+...=sumlimits_{j=0}sumlimits_{i=1}^{lfloorfrac{n}{2^j} floor}2^j imes i)

    故我们可用二分,通过(s_n)找到一个合适的(n),再根据上式计算(S),最后再加上一些多出来的部分即可

    并且,根据打表得出的规律,我们可以发现(n)基本在(frac{N}{2})附近波动((N)为读入),故可以缩小二分的范围

    /*program from Wolfycz*/
    #include<map>
    #include<cmath>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define Fi first
    #define Se second
    #define ll_inf 1e18
    #define MK make_pair
    #define sqr(x) ((x)*(x))
    #define pii pair<int,int>
    #define int_inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline char gc(){
    	static char buf[1000000],*p1=buf,*p2=buf;
    	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    template<typename T>inline T frd(T x){
    	int f=1; char ch=gc();
    	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')    f=-1;
    	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    template<typename T>inline T read(T x){
    	int f=1; char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x<0)	putchar('-'),x=-x;
    	if (x>9)	print(x/10);
    	putchar(x%10+'0');
    }
    const int P=1e9+7,Inv=5e8+4;
    ll Cnt(ll x){return !x?0:Cnt(x>>1)+x;}
    ll Binary_Search(ll l,ll r,ll m){
    	while (l<=r){
    		ll mid=(l+r)>>1;
    		if (Cnt(mid)>m)	r=mid-1;
    		else	l=mid+1;
    	}
    	return l-1;
    }
    int main(){
    	int T=read(0);
    	while (T--){
    		int Ans=1;
    		ll m=read(0ll)-1,n=Binary_Search((m>>1)-100,(m>>1)+100,m);
    		for (int i=0;1ll<<i<=n;i++){
    			ll delta=1ll<<i,E=n/delta*delta;
    			Ans=(Ans+1ll*(E%P)*((E/delta+1)%P)*Inv%P)%P;
    		}
    		Ans=(Ans+1ll*(m-Cnt(n))%P*((n+1)%P)%P)%P;
    		printf("%d
    ",Ans);
    	}
    	return 0;
    }
    
    作者:Wolfycz
    本文版权归作者和博客园共有,欢迎转载,但必须在文章开头注明原文出处,否则保留追究法律责任的权利
  • 相关阅读:
    C# Unity依赖注入
    Spring学习总结
    .Net 上传文件和下载文件
    JavaWeb学习篇--Filter过滤器
    Struts2入门教程
    Ceph 时钟偏移问题 clock skew detected 解决方案--- 部署内网NTP服务
    Erasure Coding(纠删码)深入分析 转
    s3cmd : Add a config parameter to enable path-style bucket access 当ceph rgw使用域名时,需要支持 path-style bucket特性
    ceph rgw java sdk 使用域名访问服务时需要设置s3client的配置项 PathStyleAccess 为true, 负责将报域名异常
    直播流怎么存储在Ceph对象存储上? Linux内存文件系统tmpfs(/dev/shm) 的应用
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/14930914.html
Copyright © 2020-2023  润新知