Problem
0 结束操作
1 K P 将一个数K以优先级P加入
2 取出优先级最高的那个数
3 取出优先级最低的那个数
Solution
Splay模板题
Notice
是输出数而不是输出优先级。
Code
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 1000000;
const double eps = 1e-6, phi = acos(-1.0);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point = 0, root;
struct node
{
int val[N + 5], son[2][N + 5], parent[N + 5], label[N + 5];
void Rotate(int x, int &rt)
{
int y = parent[x], z = parent[y];
int l = (son[1][y] == x), r = 1 - l;
if (y == rt) rt = x;
else if (son[0][z] == y) son[0][z] = x;
else son[1][z] = x;
parent[x] = z;
parent[son[r][x]] = y, son[l][y] = son[r][x];
parent[y] = x, son[r][x] = y;
}
void Splay(int x, int &rt)
{
while (x != rt)
{
int y = parent[x], z = parent[y];
if (y != rt)
{
if ((son[0][z] == y) ^ (son[0][y] == x))
Rotate(x, rt);
else Rotate(y, rt);
}
Rotate(x, rt);
}
}
void Insert(int &u, int x, int y, int last)
{
if (u == 0)
{
u = ++point;
val[u] = y, parent[u] = last, label[u] = x;
Splay(u, root);
}
else
{
if (y > val[u]) Insert(son[1][u], x, y, u);
else if (y < val[u]) Insert(son[0][u], x, y, u);
}
}
void Delete(int x)
{
Splay(x, root);
if (son[0][x] * son[1][x] == 0) root = son[0][x] + son[1][x];
else
{
int t = son[1][x];
while (son[0][t] != 0) t = son[0][t];
Splay(t, root);
son[0][t] = son[0][x], parent[son[0][x]] = t;
}
parent[root] = 0;
}
int Find_max()
{
int t = root;
while (son[1][t] != 0) t = son[1][t];
return t;
}
int Find_min()
{
int t = root;
while (son[0][t] != 0) t = son[0][t];
return t;
}
}Splay_tree;
int main()
{
int H_H;
while (~scanf("%d", &H_H) && H_H)
{
int x, y;
switch (H_H)
{
case 1:
x = read(), y = read();
Splay_tree.Insert(root, x, y, 0);
break;
case 2:
x = Splay_tree.Find_max();
printf("%d
", Splay_tree.label[x]);
Splay_tree.Delete(x);
break;
case 3:
y = Splay_tree.Find_min();
printf("%d
", Splay_tree.label[y]);
Splay_tree.Delete(y);
break;
}
}
}