题目:传送门
题意:有一个凸多形面包,有一罐牛奶,牛奶高度为 h,认为牛奶的宽度无限长,现在你最多可以蘸 k 次牛奶, 问你蘸到牛奶的面包的面积最大是多少。
3 <= n <= 20, 0 <= k <= 8, 0 <= h <= 10
思路:dfs 枚举凸多边形蘸牛奶的 K 条边,将这些边向内缩进 h,求新的多边形的半平面交即是不能蘸到牛奶的面积,维护一个最小值,最后答案就是没有蘸牛奶时的面积减去这个最小值。
注意 k 可能大于 n,要判一下。
#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <map> #include <vector> #include <set> #include <string> #include <math.h> #define LL long long #define mem(i, j) memset(i, j, sizeof(i)) #define rep(i, j, k) for(int i = j; i <= k; i++) #define dep(i, j, k) for(int i = k; i >= j; i--) #define pb push_back #define make make_pair #define INF INT_MAX #define inf LLONG_MAX #define PI acos(-1) #define fir first #define sec second using namespace std; const int N = 22; const double eps = 1e-6; const double maxL = 1000.0; struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } }; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } Point operator + (Point A, Point B) { return Point(A.x + B.x, A.y + B.y); } Point operator - (Point A, Point B) { return Point(A.x - B.x, A.y - B.y); } Point operator * (Point A, double p) { return Point(A.x * p, A.y * p); } Point operator / (Point A, double p) { return Point(A.x / p, A.y / p); } double Cross(Point A, Point B) { return A.x * B.y - A.y * B.x; } double Dot(Point A, Point B) { return A.x * B.x + A.y * B.y; } double Length(Point A) { return sqrt(Dot(A, A)); } Point Rotate(Point A, double rad) { /// 向量逆时针旋转 rad (弧度) return Point(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); } /* 有向直线,它的左边就是对应的半平面 */ struct Line { Point p; /// 直线任意一点 Point v; /// 方向向量 double ang; /// 极角,即从x正半轴旋转到向量v所需要的角(弧度) Line() { } Line(Point p, Point v) : p(p), v(v) { ang = atan2(v.y, v.x); } bool operator < (const Line& L) const { return ang < L.ang; } }; /* 点p在有向直线L的左边 */ bool OnLeft(Line L, Point p) { return dcmp(Cross(L.v, p - L.p)) > 0; } /* 二直线交点,假设交点唯一存在。*/ Point GLI(Line a, Line b) { Point u = a.p - b.p; double t = Cross(b.v, u) / Cross(a.v, b.v); return a.p + a.v * t; } Point p[22]; Line q[22]; int HPI(Line* L, int n, Point* Q) { sort(L, L + n); /// 极角排序 int st, ed; /// 双端队列的第一个元素和最后一个元素的下标 // Point *p = new Point[n]; /// p[i]为q[i]和q[i+1]的交点 // Line *q = new Line[n]; /// 双端队列 q[st = ed = 0] = L[0]; rep(i, 1, n - 1) { while(st < ed && !OnLeft(L[i], p[ed - 1])) ed--; while(st < ed && !OnLeft(L[i], p[st])) st++; q[++ed] = L[i]; /// 平行取内测那条 if(fabs(Cross(q[ed].v, q[ed - 1].v)) < eps) { ed--; if(OnLeft(q[ed], L[i].p)) q[ed] = L[i]; } if(st < ed) p[ed - 1] = GLI(q[ed - 1], q[ed]); } while(st < ed && !OnLeft(q[st], p[ed - 1])) ed--; if(ed - st <= 1) return 0; p[ed] = GLI(q[ed], q[st]); int m = 0; rep(i, st, ed) Q[m++] = p[i]; return m; } Point P[22], Q[22]; Line L[22], tmp_L[22]; void change(Point A, Point B, Point &C, Point &D, double p) { /// 求A,B两点向里移动d距离后的两点C,D double len = Length(B - A); double addx = (A.y - B.y) * p / len; double addy = (B.x - A.x) * p / len; C.x = A.x + addx; C.y = A.y + addy; D.x = B.x + addx; D.y = B.y + addy; } int n, k, h; double mi = 100000000.0; void dfs(int coun, int pos) { if(mi == 0.0) return ; if(n - pos < k - coun) return ; if(coun > k) return ; if(coun == k) { rep(i, 0, n - 1) tmp_L[i] = L[i]; int cnt = HPI(tmp_L, n, Q); double res = 0.0; rep(i, 1, cnt - 2) res += Cross(Q[i] - Q[0], Q[i + 1] - Q[0]); if(res < 0) res = -res; mi = min(mi, res); return ; } if(pos >= n) return ; Point A, B; change(P[pos], P[(pos + 1) % n], A, B, h); L[pos] = Line(A, B - A); dfs(coun + 1, pos + 1); L[pos] = Line(P[pos], P[(pos + 1) % n] - P[pos]); dfs(coun, pos + 1); } int main() { while(~scanf("%d %d %d", &n, &k, &h)) { if(n == 0 && k == 0 && h == 0) return 0; if(k > n) k = n; rep(i, 0, n - 1) scanf("%lf %lf", &P[i].x, &P[i].y); if(k == 0 || h == 0) { puts("0.00"); continue; } rep(i, 0, n - 1) { L[i] = Line(P[i], P[(i + 1) % n] - P[i]); tmp_L[i] = L[i]; } double ans = 0; int cnt = HPI(tmp_L, n, Q); rep(i, 1, cnt - 2) ans += Cross(Q[i] - Q[0], Q[i + 1] - Q[0]); if(ans < 0) ans = -ans; mi = 100000000.0; Point A, B; change(P[0], P[1], A, B, h); L[0] = Line(A, B - A); dfs(1, 1); L[0] = Line(P[0], P[1] - P[0]); dfs(0, 1); printf("%.2f ", (ans - mi) / 2.0); } return 0; }