• 数学图形之双叶双曲面


    双曲线绕其对称轴旋转而生成的曲面即为双曲面,上节讲了单叶双曲面,这一节继续讲双叶双曲面.

    双叶双曲面的数学公式如下:

    x*x/a/a + y*y/b/b - z*z/c/c = -1

    在数学里,双曲面是一种二次曲面。采用直角坐标 (x, y, z)\,! ,双曲面可以用公式表达为

    {x^2 over a^2} + {y^2 over b^2} - {z^2 over c^2}=1\,!  (单叶双曲面),

     - {x^2 over a^2} - {y^2 over b^2} + {z^2 over c^2}=1\,!  (双叶双曲面)。

    假若,a=b\,! ,则称为旋转双曲面

    本文将展示几种生成双叶双曲面算法和切图.使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815

    (1)

    #x*x/a/a + y*y/b/b - z*z/c/c = -1
    
    vertices = dimension1:72 dimension2:72
    
    u = from 0 to (2*PI) dimension1
    v = from (-5) to (5) dimension2 
    
    a = rand2(1, 5)
    b = rand2(1, 5)
    c = rand2(1, 5)
    
    x = a*sqrt(v*v - 1)*cos(u)
    z = b*sqrt(v*v - 1)*sin(u)
    y = c*v

    (2)

    vertices = D1:100 D2:100
    u = from 0 to (1*PI) D1
    v = from (0) to (2*PI) D2 gap[PI*0.5, PI*1.5]
    a = rand2(1, 10)
    b = rand2(1, 10)
    c = rand2(1, 10)
    x = a*tan(v)*sin(u)
    y = b*sec(v)
    z = c*tan(v)*cos(u)

    (3)

    我之前写过关于双曲线的文章,数学图形(1.10) 双曲线

    将双曲线旋转一周即能生成双曲面.

    vertices = 360
    u = from -1 to 1 gap[0]
    
    x = u
    y = 1/x
    
    y = limit(y, -50, 50)
    
    surface_slices = 72
    rotate = anchor[0, 0, 0], axis[1, 1, 0], angle[0, 2*PI]

    (4)

    双曲面(东西开口)

    vertices = 100
    
    t = from 0 to (2*PI) gap[PI*0.5, PI, PI*1.5]
    a = rand2(0.1, 10)
    b = rand2(0.1, 10)
    
    x = a*sec(t)
    y = b*tan(t)
    
    x = limit(x, -50, 50)
    y = limit(y, -50, 50)
    
    surface_slices = 72
    rotate = anchor[0, 0, 0], axis[1, 0, 0], angle[0, 2*PI]

    双曲面(南北开口)

    vertices = 100
    
    t = from 0 to (2*PI) gap[PI*0.5, PI, PI*1.5]
    a = rand2(0.1, 10)
    b = rand2(0.1, 10)
    
    x = a*tan(t)
    y = b*sec(t)
    
    x = limit(x, -50, 50)
    y = limit(y, -50, 50)
    
    surface_slices = 72
    rotate = anchor[0, 0, 0], axis[0, 1, 0], angle[0, 2*PI]

  • 相关阅读:
    为什么游戏行业喜欢用PolarDB
    以“升舱”之名,谈谈云原生数据仓库AnalyticDB的核心技术
    研发效能的思考总结
    InnoDB之UNDO LOG介绍
    数据库事务隔离发展历史
    拥抱开放,Serverless 时代的下一征程
    对软件系统的一些理解
    【20220221】数据得多维去看
    【20220222】充满爱,必然以被爱作为回报
    【一句日历】2022年3月
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3914570.html
Copyright © 2020-2023  润新知