• 数学图形(2.2)N叶结


    上一节讲的三叶结,举一反三,由三可到无穷,这一节讲N叶结

    再次看下三叶结的公式:

    x = sin(t) + 2*sin(2*t)
    y = cos(t) - 2*cos(2*t)

    将其改为:

    x = sin(t) + 2*sin((n-1)*t)
    y = cos(t) - 2*cos((n-1)*t)

    就变成了N叶结了,如此简单.

    N叶结:

    vertices = 12000
    
    t = from 0 to (20*PI)
    
    n = rand_int2(2, 24)
    
    x = sin(t) + 2*sin(n*t - t)
    y = cos(t) - 2*cos(n*t - t)
    z = -sin(n*t)
    
    r = 5;
    x = x*r
    y = y*r
    z = z*r

    另一种写法:

    vertices = 12000
    
    t = from 0 to (20*PI)
    
    n = rand_int2(2, 24)
    
    x = (2 + cos(n*t))*cos((n - 1)*t)
    y = (2 + cos(n*t))*sin((n - 1)*t)
    z = sin(n*t)
    
    r = 5
    x = x*r
    y = y*r
    z = z*r

    四叶结

    #http://www.mathcurve.com/courbes3d/noeuds/noeuddetrefle.shtml
    
    vertices = 1000
    
    t = from 0 to (2*PI)
    
    r = 10;
    x = r*(cos(t) + 2*cos(3*t))
    z = r*(sin(t) - 2*sin(3*t))
    y = r*sin(4*t)

  • 相关阅读:
    Less-21
    Less-22
    Less-21
    Less-20
    ssrf redis gopher
    Less19
    Less18
    Arm 系统查看、修改系统时间
    通过 grpc 请求标头发送自定义数据
    gRpc 空参数
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3839982.html
Copyright © 2020-2023  润新知