(n) 和 (m) 和 (p) 和序列 (a_i(1le ile n))。(m) 种如下操作:
1 l r id
令 (iin[l,r]:a_i=id)。2 l r
输出至多 (lfloorfrac{100}{p} floor) 个数,其中包括所有 ([l,r]) 区间内出现 (gelceilfrac{p(r-l+1)}{100} ceil) 次的 (a_i)。
数据范围:(1le n,m,id,a_ile 150000),(20le ple 100),(1le lle rle n)
一眼想法:搞个线段树,节点存该区间出现频率 (gefrac{p}{100}) 的 (a_i) 值和出现次数存下来,合并。
这个做法的依据: 如果区间 ([l,r]) 中 (a_i) 出现频率 (gefrac{p}{100}),([l,mid]) 或 ([mid+1,r]) 必中有一个也满足。
这个做法的 ( t bug): 若 (a_i) 存在于 ([l,mid]) 的节点中而不存在于 ([mid+1,r]) 的节点中(或反过来),节点的信息难以合并。
于是,我这个思维愚钝的大蒟蒻就没在考场上做出来。
这题的正解类似以前的一道经典题:一个序列求众数(出现频率 (ge frac 12)),空间复杂度 只能 (Theta(1))。
做法是记录 (now) 和 (cnt)。新加入数 (a) 的时候,如果 ([now=a]),(cnt++);如果 ([now ot=a]),(cnt--),如果 ([cnt<0]),(cnt=1) 并且 (now=a)。
这题也类似。出现频率 (gefrac{p}{100}) 的数至多 (lfloorfrac{100}{p} floor) 个,所以可以记录 (lfloorfrac{100}{p} floor) 个 (now_i) 和 (cnt_i)。
每次加入 (a),如果 ([now_i=a]),(cnt_i++);如果 ([now_i ot=a]),(cnt_i--),如果 ([cnt_i<0]),(cnt_i=1) 并且 (now_i=a)。
这样的话虽然只存了 (lfloorfrac{100}{p} floor) 种数,但已经完全反映了区间内数的数量对比,所以节点信息可以直接合并。
最后每个节点或许会存下不满足出现频率 (gefrac{p}{100}) 的值,但是输出只要包含答案就行了(题中说的)。
- 代码
稍微长了点,但是没有坑人的细节,直接写就好了。
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define b(a) a.begin()
#define e(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=150000;
int n,m,p,pl,a[N+7];
//Segmenttree
typedef vector<pair<int,int>> vpii;
#define mid ((l+r)>>1)
#define ls k<<1,l,mid
#define rs k<<1|1,mid+1,r
int mk[N<<2]; vpii ca[N<<2]; //pair.x 表示 now_i,pair.y 表示 cnt_i
void fill(vpii&v,int id,int c){v.clear(),v.pb(mp(id,c));}
vpii operator+(vpii p,vpii q){ //将 p 中的数一一加入 q
vpii r;
for(auto&u:p){
int ok=0; for(auto&v:q)if(u.x==v.x){v.y+=u.y,ok=1;break;}
if(ok) continue; q.pb(u); if(sz(q)<=pl) continue;
int mn=n; for(auto&v:q) mn=min(mn,v.y);
r.clear(); for(auto&v:q)if(v.y-mn) r.pb(mp(v.x,v.y-mn)); q=r;
}
return q;
}
void down(int k,int l,int r){
if(!mk[k]) return;
fill(ca[k<<1],mk[k],mid-l+1),fill(ca[k<<1|1],mk[k],r-mid);
mk[k<<1]=mk[k<<1|1]=mk[k],mk[k]=0;
}
void build(int k=1,int l=1,int r=n){
if(l==r) return void(fill(ca[k],a[l],1));
build(ls),build(rs),ca[k]=ca[k<<1]+ca[k<<1|1];
}
void fix(int x,int y,int z,int k=1,int l=1,int r=n){
if(x<=l&&r<=y) return void((fill(ca[k],z,r-l+1),mk[k]=z)); down(k,l,r);
if(mid>=x) fix(x,y,z,ls); if(mid<y) fix(x,y,z,rs);
ca[k]=ca[k<<1]+ca[k<<1|1];
}
vpii query(int x,int y,int k=1,int l=1,int r=n){
if(x<=l&&r<=y) return ca[k]; down(k,l,r);
vpii res; if(mid>=x) res=res+query(x,y,ls); if(mid<y) res=res+query(x,y,rs);
return res;
}
void Print(int k=1,int l=1,int r=n){ //调试用的,我这个蒟蒻,总是代码写挂
printf("[%d,%d,%d]:mk=%d
",k,l,r,mk[k]);
for(auto&u:ca[k]) printf("(%d,%d)",u.x,u.y);puts("");
if(l==r) return; down(k,l,r);
Print(ls),Print(rs);
}
//Main
int main(){
scanf("%d%d%d",&n,&m,&p),pl=100/p;
for(int i=1;i<=n;i++) scanf("%d",&a[i]); build();
for(int i=1;i<=m;i++){
int o; scanf("%d",&o);
if(o==1){int l,r,id; scanf("%d%d%d",&l,&r,&id); fix(l,r,id);}
else {
int l,r; scanf("%d%d",&l,&r);
vpii res=query(l,r); printf("%d",sz(res));
for(auto&u:res) printf(" %d",u.x); puts("");
}
// puts("+++++");
// Print();
// puts("-----");
}
return 0;
}
祝大家学习愉快!