• (线性dp 最大子段和 最大子矩阵和)POJ1050 To the Max


    To the Max
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 54338   Accepted: 28752

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    就是最大字段和的升级版,
    从:http://www.cnblogs.com/fll/archive/2008/05/17/1201543.html 可知:

     假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
      | a11 …… a1i ……a1j ……a1n |
      | a21 …… a2i ……a2j ……a2n |
      |  .     .     .    .    .     .    .   |
      |  .     .     .    .    .     .    .   |
      | ar1 …… ari ……arj ……arn |
      |  .     .     .    .    .     .    .   |
      |  .     .     .    .    .     .    .   |
      | ak1 …… aki ……akj ……akn |
      |  .     .     .    .    .     .    .   |
      | an1 …… ani ……anj ……ann |

     那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
     (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
     由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

    就是先让i从0到n遍历,然后j从i到n遍历,最后在第j行中k从0到n遍历,用一个数组分别保存每个列的各行的数字之和,就可以化为最大连续和(降维)。

    复杂度为:O(n^3)

    C++代码:

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    const int maxn = 102;
    int d[maxn][maxn];
    int s[maxn];
    int INF = -0x3f3f3f3f;
    
    int MaxArray(int a[],int n){
        int m = INF;
        int tmp = -1;
        for(int i = 0; i < n; i++){
            if(tmp > 0)
                tmp += a[i];
            else
                tmp = a[i];
            if(tmp > m)
                m = tmp;
        }
        return m;
    }
    
    int main(){
        int n;
        scanf("%d",&n);
        for(int i = 0; i < n; i++){
            for(int j = 0; j < n; j++){
                scanf("%d",&d[i][j]);
            }
        }
        int ans = INF,tmp;
        for(int i = 0; i < n; i++){
            memset(s,0,sizeof(s));
            for(int j = i; j < n; j++){
                for(int k = 0; k < n; k++){
                    s[k] += d[j][k];
                }
                tmp = MaxArray(s,n);
                if(tmp > ans)
                    ans = tmp;
            }
        }
        printf("%d
    ",ans);
        return 0;
    }
  • 相关阅读:
    BeanUtils.copyProperties的用法
    Eclipse中GitLab的配置和使用入门
    认识与入门 Markdown
    mybatis基础配置
    动态规划-最长公共子串
    查找
    Entity Framework Code First ---EF Power Tool 和MySql一起使用遇到的问题
    使用TortoiseSVN碰到的几个问题(2)-冲突解决, 图标重载
    使用TortoiseSVN碰到的几个问题(1)-导入,提交,更新
    Asp.net MVC4 Step By Step(5)-使用Web API
  • 原文地址:https://www.cnblogs.com/Weixu-Liu/p/10513047.html
Copyright © 2020-2023  润新知