• Deploying Keras model on Tensorflow Serving--


    keras训练了个二分类的模型。需求是把keras模型跑到 tensorflow serving上 (TensorFlow Serving 系统用于在生产环境中运行模型)

    keras模型转 tensorflow模型

    我把 keras模型转tensorflow serving模型所使用的方法如下:

    1、要拿到算法训练好的keras模型文件(一个HDF5文件)

    该文件应该包含:

    • 模型的结构,以便重构该模型
    • 模型的权重
    • 训练配置(损失函数,优化器等)
    • 优化器的状态,以便于从上次训练中断的地方开始

    2、编写 keras模型转tensorflow serving模型的代码

    import pandas as pd
    import os
    import tensorflow as tf
    
    tf.logging.set_verbosity(tf.logging.INFO)
    ...
    def build_model():
        ############
        ...
        return model
    
    
    def save_model_for_production(model, version, path='prod_models'):
        tf.keras.backend.set_learning_phase(1)
        if not os.path.exists(path):
            os.mkdir(path)
        export_path = os.path.join(
            tf.compat.as_bytes(path),
            tf.compat.as_bytes(version))
        builder = tf.saved_model.builder.SavedModelBuilder(export_path)
    
        model_input = tf.saved_model.utils.build_tensor_info(model.input)
        model_output = tf.saved_model.utils.build_tensor_info(model.output)
    
        prediction_signature = (
            tf.saved_model.signature_def_utils.build_signature_def(
                inputs={'inputs': model_input},
                outputs={'output': model_output},
                method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
    
        with tf.keras.backend.get_session() as sess:
            builder.add_meta_graph_and_variables(
                sess=sess, tags=[tf.saved_model.tag_constants.SERVING],
                signature_def_map={
                    'predict':
                        prediction_signature,
                })
    
            builder.save()
    
    
    if __name__ == '__main__':
        model_file = './my_model.h5'
        if (os.path.isfile(model_file)):
            print('model file detected. Loading.')
            model = tf.keras.models.load_model(model_file)
        else:
            print('No model file detected.  Starting from scratch.')
            model = build_model()
            model.compile(loss='binary_crossentropy', optimizer="adam", metrics=['accuracy'])
            model.save(model_file)
    
        model.fit(X_train, y_train, batch_size=100, epochs=1, validation_data=(X_test, y_test))
        model.summary()
    
        export_path = "tf-model"
        save_model_for_production(model, "1", export_path)
    

    上面的例子将模型保存到 tf-model目录下
    tf-model目录结构如下:

    tf-model/
    └── 1
        ├── saved_model.pb
        └── variables
            ├── variables.data-00000-of-00001
            └── variables.index
    

    saved_model.pb 是能在 tensorflow serving跑起来的模型。

    3、跑模型

    tensorflow_model_server --port=9000 --model_name="username" --model_base_path="/data/models/tf-model/"
    

    标准输出如下(算法模型已成功跑起来了):

    Running ModelServer at 0.0.0.0:00 ...
    

    4、客户端代码

    #!/usr/bin/env python  
    # encoding: utf-8  
    
    """ 
    @version: v1.0 
    @author: zwqjoy 
    @contact: zwqjoy@163.com 
    @site: https://blog.csdn.net/zwqjoy 
    @file: client
    @time: 2018/6/29 15:02 
    """
    
    from __future__ import print_function
    from grpc.beta import implementations
    import tensorflow as tf
    
    from tensorflow_serving.apis import predict_pb2
    from tensorflow_serving.apis import prediction_service_pb2
    import numpy as np
    
    tf.app.flags.DEFINE_string('server', 'localhost:9000',
                               'PredictionService host:port')
    FLAGS = tf.app.flags.FLAGS
    
    
    def main(_):
        host, port = FLAGS.server.split(':')
        channel = implementations.insecure_channel(host, int(port))
        stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
        # Send request
    
        # See prediction_service.proto for gRPC request/response details.
        data = np.array([4, 0, 0, 0, 1, 0, 1])
        data = data.astype(np.float32)
    
        request = predict_pb2.PredictRequest()
        request.model_spec.name = 'username'  # 这个name跟tensorflow_model_server  --model_name="username" 对应
        request.model_spec.signature_name = 'predict'  # 这个signature_name  跟signature_def_map 对应
        request.inputs['inputs'].CopyFrom(
            tf.contrib.util.make_tensor_proto(data, shape=(1, 7)))  # shape跟 keras的model.input类型对应
        result = stub.Predict(request, 10.0)  # 10 secs timeout
        print(result)
    
    
    if __name__ == '__main__':
        tf.app.run()

    客户端跑出的结果是:

    outputs {
      key: "output"
      value {
        dtype: DT_FLOAT
        tensor_shape {
          dim {
            size: 1
          }
          dim {
            size: 1
          }
        }
        float_val: 0.976889811523
      }
    }
    

    float_val: 0.976889811523 就是我们需要的结果(概率)


    keras模型转 tensorflow模型的一些说明

    1、 keras 保存模型

    可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:

    • 模型的结构,以便重构该模型
    • 模型的权重
    • 训练配置(损失函数,优化器等)
    • 优化器的状态,以便于从上次训练中断的地方开始

    当然这个 HDF5 也可以是用下面的代码生成

    from keras.models import load_model
    model.save('my_model.h5')

    2、 keras 加载模型

    keras 加载模型(中间部分代码省略了):


    import numpy as np
    from keras.datasets import mnist
    from keras.utils import np_utils
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.optimizers import SGD
    from keras.models import load_model
    # 载入数据
    (x_train,y_train),(x_test,y_test) = mnist.load_data()
    # (60000,28,28)
    print('x_shape:',x_train.shape)
    # (60000)
    print('y_shape:',y_train.shape)
    # (60000,28,28)->(60000,784)
    x_train = x_train.reshape(x_train.shape[0],-1)/255.0
    x_test = x_test.reshape(x_test.shape[0],-1)/255.0
    # 换one hot格式
    y_train = np_utils.to_categorical(y_train,num_classes=10)
    y_test = np_utils.to_categorical(y_test,num_classes=10)
    
    # 载入模型
    model = load_model('model.h5')
    
    # 评估模型
    loss,accuracy = model.evaluate(x_test,y_test)
    
    print('
    test loss',loss)
    print('accuracy',accuracy)
    
    # 训练模型
    model.fit(x_train,y_train,batch_size=64,epochs=2)
    
    # 评估模型
    loss,accuracy = model.evaluate(x_test,y_test)
    
    print('
    test loss',loss)
    print('accuracy',accuracy)
    
    # 保存参数,载入参数
    model.save_weights('my_model_weights.h5')
    model.load_weights('my_model_weights.h5')

    keras 模型转tensorflow serving 模型的一些坑

    希望能让新手少走一些弯路

    坑1:过时的生成方法

    有些方法已经过时了(例如下面这种):

    from tensorflow_serving.session_bundle import exporter
    
    export_path = ... # where to save the exported graph
    export_version = ... # version number (integer)
    
    saver = tf.train.Saver(sharded=True)
    model_exporter = exporter.Exporter(saver)
    signature = exporter.classification_signature(input_tensor=model.input,
                                                  scores_tensor=model.output)
    model_exporter.init(sess.graph.as_graph_def(),
                        default_graph_signature=signature)
    model_exporter.export(export_path, tf.constant(export_version), sess)
    

    如果使用这种过时的方法,用tensorflow serving 跑模型的时候会提示:

    WARNING:tensorflow:From test.py:107: Exporter.export (from tensorflow.contrib.session_bundle.exporter) is deprecated and will be removed after 2017-06-30.
    Instructions for updating:
    No longer supported. Switch to SavedModel immediately.
    

    从warning中 显然可以知道这种方法要被抛弃了,不再支持这种方法了, 建议我们转用 SaveModel方法。

    填坑大法: 使用 SaveModel

    def save_model_for_production(model, version, path='prod_models'):
        tf.keras.backend.set_learning_phase(1)
        if not os.path.exists(path):
            os.mkdir(path)
        export_path = os.path.join(
            tf.compat.as_bytes(path),
            tf.compat.as_bytes(version))
        builder = tf.saved_model.builder.SavedModelBuilder(export_path)
    
        model_input = tf.saved_model.utils.build_tensor_info(model.input)
        model_output = tf.saved_model.utils.build_tensor_info(model.output)
    
        prediction_signature = (
            tf.saved_model.signature_def_utils.build_signature_def(
                inputs={'inputs': model_input},
                outputs={'output': model_output},
                method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))
    
        with tf.keras.backend.get_session() as sess:
            builder.add_meta_graph_and_variables(
                sess=sess, tags=[tf.saved_model.tag_constants.SERVING],
                signature_def_map={
                    'predict':
                        prediction_signature,
                })
    
            builder.save()
    参考:
    https://www.jianshu.com/p/91aae37f1da6 
    Deploying Keras model on Tensorflow Serving with GPU support

    https://github.com/amir-abdi/keras_to_tensorflow

  • 相关阅读:
    【SSRS】入门篇(六) -- 分组和总计
    【SSRS】入门篇(五) -- 设置报表格式
    【SSRS】入门篇(四) -- 向报表添加数据
    【SSRS】入门篇(三) -- 为报表定义数据集
    【SSRS】入门篇(二) -- 建立数据源
    【SSRS】入门篇(一) -- 创建SSRS项目
    【MS SQL】数据库维护计划之数据库备份(二)
    【MS SQL】数据库维护计划之数据库备份(一)
    【MS SQL】查看任务执行进度
    c++ 在客户端的GCC使用
  • 原文地址:https://www.cnblogs.com/WayneZeng/p/9290691.html
Copyright © 2020-2023  润新知