• 特征提取,特征选择


    参考文献

    特征提取是机器学习的准备工作。

    一、特征大体上分几种呢

    有人分:high features 和low features. high features 指比较泛的特征;low features 指相对具体的特征。

    有人分:具体特征,原始特征(不加工raw),抽象特征。

    总体上,Low Level 比较有针对性,单个特征覆盖面小(含有这个特征的数据不多),特征数量(维度)很大。High Level比较泛化,单个特征覆盖面大(含有这个特征的数据很多),特征数量(维度)不大。长尾样本的预测值主要受High Level特征影响。高频样本的预测值主要受Low Level特征影响。

      • 非线性模型的特征
        1)可以主要使用High Level特征,因为计算复杂度大,所以特征维度不宜太高;
        2)通过High Level非线性映射可以比较好地拟合目标。

      • 线性模型的特征
        1)特征体系要尽可能全面,High Level和Low Level都要有;
        2)可以将High Level转换Low Level,以提升模型的拟合能力。

                

    二、特征归一化

    特征抽取后,如果不同特征的取值范围相差很大,最好对特征进行归一化,以取得更好的效果,常见的归一化方式如下:

      •   Rescaling:
        归一化到[0,1] 或 [-1,1],用类似方式:

      • Standardization:
        为x分布的均值,为x分布的标准差;

      • Scaling to unit length:
        归一化到单位长度向量

    三、特征选择

    特征抽取和归一化之后,如果发现特征太多,导致模型无法训练,或很容易导致模型过拟合,则需要对特征进行选择,挑选有价值的特征。

      • Filter:
        假设特征子集对模型预估的影响互相独立,选择一个特征子集,分析该子集和数据Label的关系,如果存在某种正相关,则认为该特征子集有效。衡量特征子集和数据Label关系的算法有很多,如Chi-square,Information Gain。

      • Wrapper:
        选择一个特征子集加入原有特征集合,用模型进行训练,比较子集加入前后的效果,如果效果变好,则认为该特征子集有效,否则认为无效。

      • Embedded:
        将特征选择和模型训练结合起来,如在损失函数中加入L1 Norm ,L2 Norm。

      

  • 相关阅读:
    MySQL系列(二)
    MySQL系列(一)
    RabbitMQ的安装部署
    RabbitMQ原理介绍
    消息中间件metaq
    消息中间件之zookper安装部署
    ZooKeeper基本原理
    消息中间件剖析
    了解Node.js
    windows下使用Git
  • 原文地址:https://www.cnblogs.com/Wanggcong/p/4854693.html
Copyright © 2020-2023  润新知