How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8997 Accepted Submission(s): 2697
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2
2 3
Sample Output
7
Author
wangye
Source
Recommend
wangye
题目大意:给定N和M个数,问在1~N-1个数中能找出多少个数的因子中有这M个数中的任意一个。
集体思路:容斥定理,奇加偶减。从m中第一个数开始遍历,总数减去包含它的两个集合的数、加上包含它的三个集合的数、。。。
#include <cstdio> using namespace std; const int maxn=15; int num,m; long long n,ans,a[maxn]; long long gcd(long long a,long long b) { return b==0?a:gcd(b,a%b); } void dfs(int i, long long lcm , int id) { lcm = a[i]/(gcd(a[i],lcm))*lcm; if(id%2) ans += (n-1)/lcm; else ans -= (n-1)/lcm; for(int j=i+1;j<=num;j++) dfs(j,lcm,id+1); } int main() { while(scanf("%lld %d",&n,&m)!=EOF) { int t; num=0; for(int i=1;i<=m;i++) { scanf("%d",&t); if(t) a[++num] = t; } ans=0; for(int i=1;i<=num;i++) { dfs(i,a[i],1); } printf("%lld ",ans); } }