• Go Deeper HDU


    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3435    Accepted Submission(s): 1125


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     
    Recommend
    zhouzeyong
     
     
     
    解析:
      一定要明确 是哪两个点
      然后建图一定要明确怎么建
      二分定要写对
     
    #include <iostream>
    #include <cstdio>
    #include <sstream>
    #include <cstring>
    #include <map>
    #include <cctype>
    #include <set>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #include <cmath>
    #include <bitset>
    #define rap(i, a, n) for(int i=a; i<=n; i++)
    #define rep(i, a, n) for(int i=a; i<n; i++)
    #define lap(i, a, n) for(int i=n; i>=a; i--)
    #define lep(i, a, n) for(int i=n; i>a; i--)
    #define rd(a) scanf("%d", &a)
    #define rlld(a) scanf("%lld", &a)
    #define rc(a) scanf("%c", &a)
    #define rs(a) scanf("%s", a)
    #define pd(a) printf("%d
    ", a);
    #define plld(a) printf("%lld
    ", a);
    #define pc(a) printf("%c
    ", a);
    #define ps(a) printf("%s
    ", a);
    #define MOD 2018
    #define LL long long
    #define ULL unsigned long long
    #define Pair pair<int, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define _  ios_base::sync_with_stdio(0),cin.tie(0)
    //freopen("1.txt", "r", stdin);
    using namespace std;
    const int maxn = 1e5 + 10, INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
    int n, m;
    int a[maxn], b[maxn], c[maxn];
    vector<int> G[maxn];
    int sccno[maxn], low[maxn], vis[maxn], scc_clock, scc_cnt;
    stack<int> S;
    void init()
    {
        for(int i = 0; i < maxn; i++) G[i].clear();
        mem(sccno, 0);
        mem(low, 0);
        mem(vis, 0);
        scc_clock = scc_cnt = 0;
    }
    
    void dfs(int u)
    {
        low[u] = vis[u] = ++scc_clock;
        S.push(u);
        for(int i = 0; i < G[u].size(); i++)
        {
            int v = G[u][i];
            if(!vis[v])
            {
                dfs(v);
                low[u] = min(low[u], low[v]);
            }
            else if(!sccno[v])
                low[u] = min(low[u], vis[v]);
        }
        if(vis[u] == low[u])
        {
            scc_cnt++;
            for(;;)
            {
                int x = S.top(); S.pop();
                sccno[x] = scc_cnt;
                if(x == u) break;
            }
        }
    }
    
    void build(int mid)
    {
        for(int i = 0; i <= mid; i++)
        {
            if(c[i] == 2)
            {
                G[a[i] << 1 | 1].push_back(b[i] << 1);
                G[b[i] << 1 | 1].push_back(a[i] << 1);
            }
            else if(c[i] == 1)
            {
                G[a[i] << 1 | 1].push_back(b[i] << 1 | 1);
                G[b[i] << 1 | 1].push_back(a[i] << 1 | 1);
                G[a[i] << 1].push_back(b[i] << 1);
                G[b[i] << 1].push_back(a[i] << 1);
            }
            else if(c[i] == 0)
            {
                G[a[i] << 1].push_back(b[i] << 1 | 1);
                G[b[i] << 1].push_back(a[i] << 1 | 1);
            }
        }
    }
    
    bool check()
    {
        for(int i = 0; i < n * 2; i += 2)
            if(sccno[i] == sccno[i + 1])
                return false;
        return true;
    }
    
    int main()
    {
        int T;
        rd(T);
        while(T--)
        {
            init();
            rd(n), rd(m);
            for(int i = 0; i < m; i++)
            {
                rd(a[i]), rd(b[i]), rd(c[i]);
            }
            int l = 0, r = m;
            while(l + 1 < r)
            {
                init();
                int mid = (l + r) / 2;
                build(mid);
                for(int i = 0; i < n * 2; i++)
                    if(!vis[i]) dfs(i);
                if(check()) l = mid;
                else r = mid;
            }
            pd(l + 1);
    
        }
    
        return 0;
    }
     
     
     

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 3435    Accepted Submission(s): 1125


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3 2 1 0 1 0 2 1 0 0 0 2 2 0 1 0 1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     
    Recommend
    zhouzeyong
     
    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    简单缓存 datatable
    发现一句实话
    今天一个比较感兴趣的心里测试
    innodb与myisam的对比总结
    插入数据的优化
    PHP 实现事务处理
    mysql 优化的整体思路
    301跳转
    jquery显示div的方法
    <c:forEach 的常用整理
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/9796628.html
Copyright © 2020-2023  润新知