题意:
求不小于字符串一半长度个字符串中的最长字串
解析:
论文题例11
将n个字符串连起来,中间用不相同的且没有出现在字符串中的字符隔开, 求后缀数组, 然后二分答案变为判定性问题,
然后判断每组的后缀是否出现在不小于 k 个的原串中, 这个做法的时间复杂度为O(nlogn)
#include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <map> #include <cctype> #include <set> #include <vector> #include <stack> #include <queue> #include <algorithm> #include <cmath> #define rap(i, a, n) for(int i=a; i<=n; i++) #define rep(i, a, n) for(int i=a; i<n; i++) #define lap(i, a, n) for(int i=n; i>=a; i--) #define lep(i, a, n) for(int i=n; i>a; i--) #define rd(a) scanf("%d", &a) #define rlld(a) scanf("%lld", &a) #define rc(a) scanf("%c", &a) #define rs(a) scanf("%s", a) #define MOD 2018 #define LL long long #define ULL unsigned long long #define Pair pair<int, int> #define mem(a, b) memset(a, b, sizeof(a)) #define _ ios_base::sync_with_stdio(0),cin.tie(0) //freopen("1.txt", "r", stdin); using namespace std; const int maxn = 1000005, INF = 0x7fffffff; int s[maxn]; int sa[maxn], t[maxn], t2[maxn], c[maxn], n; int ran[maxn], height[maxn], length[105], ans[maxn]; bool vis[105]; void get_sa(int m) { int i, *x = t, *y = t2; for(i = 0; i < m; i++) c[i] = 0; for(i = 0; i < n; i++) c[x[i] = s[i]]++; for(i = 1; i < m; i++) c[i] += c[i-1]; for(i = n-1; i >= 0; i--) sa[--c[x[i]]] = i; for(int k = 1; k <= n; k <<= 1) { int p = 0; for(i = n-k; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k; for(i = 0; i < m; i++) c[i] = 0; for(i = 0; i < n; i++) c[x[y[i]]]++; for(i = 0; i< m; i++) c[i] += c[i-1]; for(i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i]; swap(x, y); p = 1; x[sa[0]] = 0; for(i = 1; i < n; i++) x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+k] == y[sa[i]+k] ? p-1 : p++; if(p >= n) break; m = p; } int k = 0; for(i = 0; i < n; i++) ran[sa[i]] = i; for(i = 0; i < n; i++) { if(k) k--; int j = sa[ran[i]-1]; while(s[i+k] == s[j+k]) k++; height[ran[i]] = k; } } int solve(int k, int q) { mem(vis, 0); int cnt = 0, siz = 0; for(int i=1; i<n; i++) { if(height[i] < k) { if(cnt > q/2) ans[++siz] = sa[i-1]; mem(vis, 0); cnt = 0; continue; } for(int j=1; j<=q; j++) { if(sa[i] < length[j] && sa[i] > length[j-1]) if(!vis[j]) cnt++, vis[j] = 1; if(sa[i-1] < length[j] && sa[i-1] > length[j-1]) if(!vis[j]) cnt++, vis[j] = 1; } } if(cnt > q/2) ans[++siz] = sa[n-1]; if(siz) { ans[0] = siz; return true; } return false; } int q; char str[maxn]; int main() { int flag = false; while(~rd(q) && q) { length[0] = 0; int l = 1, r = 0, len; n = 0; int cnt = 28; rep(i, 0, q) { rs(str); if(!i) len = strlen(str), r = len; rep(j, 0, len) s[n++] = str[j] - 'a' + 1; length[i+1] = n; s[n++] = cnt++; } s[n++] = 0; get_sa(200); while(l <= r) { int mid = l + (r - l) / 2; if(solve(mid, q)) l = mid + 1; else r = mid - 1; } if(flag) printf(" "); else flag = true; if(l == 1) { printf("? "); continue; } for(int i=1; i<=ans[0]; i++) { for(int j=ans[i]; j<=ans[i]+r-1; j++) printf("%c", s[j]-1 + 'a'); printf(" "); } } return 0; }