• vgg16复现


    主要是练了一下数据读取

    这次用的cifa10,整个是一个字典,取了前100个去训练了一下

    要先把每一行reshape成32 * 32 * 3

    self.data = self.data.reshape(-1, 32, 32, 3)

     __getitem__ 里放到tranforms之前先Image.fromarray()

    VGG_dataset:

    from torch.utils import data
    from PIL import Image
    import random
    import torchvision.transforms as T
    import matplotlib.pyplot as plt
    
    def unpickle(file):
        import pickle
        with open(file, 'rb') as fo:
            dict = pickle.load(fo, encoding='bytes')
        return dict
    
    # imgs = unpickle('H:/DataSet/cifar-10-python/cifar-10-batches-py/data_batch_1')
    # print(imgs[b'data'].reshape(-1, 3, 32, 32))
    
    
    
    class Dataset(data.Dataset):
        def __init__(self, root, train = True, test = False):
            self.test = test
            self.train = train
            imgs = unpickle(root)
            self.data = imgs[b'data'][: 100, :]
            self.data = self.data.reshape(-1, 32, 32, 3)
            self.label = imgs[b'labels'][: 100]
    
            if self.train:
                self.transforms = T.Compose([
                    T.Scale(random.randint(256, 384)),
                    T.RandomCrop(224),
                    T.ToTensor(),
                    T.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])
                ])
            elif self.test:
                self.transforms = T.Compose([
                    T.Scale(224),
                    T.ToTensor(),
                    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
                ])
    
        def __getitem__(self, index):
            data = Image.fromarray(self.data[index])
            data = self.transforms(data)
            return data, self.label[index]
        def __len__(self):
            return len(self.label)

    config:

    class configuration:
        train_root = 'H:/DataSet/cifar-10-python/cifar-10-batches-py/data_batch_1'
        test_root = 'H:/DataSet/cifar-10-python/cifar-10-batches-py/test_batch'
        label_nums = 10
        batch_size = 4
        epochs = 10
        lr = 0.01

    VGG:

    import torch
    import torch.nn as nn
    import torch.utils.data.dataloader as Dataloader
    import numpy as np
    import torch.nn.functional as F
    from config import configuration
    from VGG_dataset import Dataset
    from tqdm import tqdm
    import matplotlib.pyplot as plt
    from PIL import Image
    
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    
    con = configuration()
    
    class vgg(nn.Module):
        def __init__(self):
            super(vgg, self).__init__()
            self.conv1 = nn.Conv2d(3, 64, kernel_size = 3, stride=1, padding=1)
            self.conv2 = nn.Conv2d(64, 64,kernel_size = 3, stride=1, padding=1)
            self.conv3 = nn.Conv2d(64, 128, kernel_size = 3, stride=1, padding=1)
            self.conv4 = nn.Conv2d(128, 128, kernel_size = 3, stride=1, padding=1)
            self.conv5 = nn.Conv2d(128, 256, kernel_size = 3, stride=1, padding=1)
            self.conv6 = nn.Conv2d(256, 256, kernel_size = 3, stride=1, padding=1)
            self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
            self.conv8 = nn.Conv2d(256, 512, kernel_size = 3, stride=1, padding=1)
            self.conv9 = nn.Conv2d(512, 512, kernel_size = 3, stride=1, padding=1)
            self.conv10 = nn.Conv2d(512, 512,  kernel_size=3, stride=1, padding=1)
            self.conv11 = nn.Conv2d(512, 512, kernel_size = 3, stride=1, padding=1)
            self.conv12 = nn.Conv2d(512, 512, kernel_size = 3, stride=1, padding=1)
            self.conv13 = nn.Conv2d(512, 512,  kernel_size=3, stride=1, padding=1)
            self.fc1 = nn.Linear(512 * 7 * 7, 4096)
            self.fc2 = nn.Linear(4096, 4096)
            self.fc3 = nn.Linear(4096, con.label_nums)
        def forward(self, x):
            x = F.relu(self.conv1(x))
            x = F.max_pool2d(F.relu(self.conv2(x)), 2)
            x = F.relu(self.conv3(x))
            x = F.max_pool2d(F.relu(self.conv4(x)), 2)
            x = F.relu(self.conv5(x))
            x = F.relu(self.conv6(x))
            x = F.max_pool2d(F.relu(self.conv7(x)), 2)
            x = F.relu(self.conv8(x))
            x = F.relu(self.conv9(x))
            x = F.max_pool2d(F.relu(self.conv10(x)), 2)
            x = F.relu(self.conv11(x))
            x = F.relu(self.conv12(x))
            x = F.max_pool2d(F.relu(self.conv13(x)), 2)
            x = x.view(x.size()[0], -1)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
    
    # img = Image.open('H:/C5AM385_Intensity.jpg')
    # print(np.array(img).shape)
    
    
    if __name__ == '__main__':
        model = vgg()
        model.to(device)
        train_dataset = Dataset(con.train_root)
        test_dataset = Dataset(con.test_root, False, True)
        train_dataloader = Dataloader.DataLoader(train_dataset, batch_size = con.batch_size, shuffle = True, num_workers = 4)
        loss = nn.CrossEntropyLoss()
        optimizer = torch.optim.Adam(model.parameters(), lr = con.lr)
    
        for epoch in range(con.epochs):
            total_loss = 0
            cnt = 0
            true_label = 0
            for data, label in tqdm(train_dataloader):
                # print(np.array(data[0]).shape)
                # plt.imshow(data[0])
                # plt.show()
    
                optimizer.zero_grad()
                data.to(device)
                label.to(device)
                output = model(data)
                loss_value = loss(output, label)
                loss_value.backward()
                optimizer.step()
                output = torch.max(output, 1)[1]
                total_loss += loss_value
                true_label += torch.sum(output == label)
                cnt += 1
            loss_mean = total_loss / float(cnt)
            accuracy = true_label / float(len(train_dataset))
            print('Loss:{:.4f}, Accuracy:{:.2f}'.format(loss_mean, accuracy))
        print('Train Accepted!')
    自己选择的路,跪着也要走完。朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
  • 相关阅读:
    Castle 1.0 RC2 尝鲜
    关注 Web Client Software Factory [Weekly Drop 08]
    ASP.NET AJAX入门系列
    Castle 1.0 Release Candidate 2发布
    ASP.NET AJAX入门系列(2):使用ScriptManager控件
    ASP.NET AJAX 1.0 Beta 发布相关文章总结及推荐
    关于ASP.NET AJAX的三个视频
    企业库2.0培训系列课程大纲[意见征询]
    Visual Studio“Orcas”October 2006 CTP版下载
    ASP.NET AJAX入门系列(4):使用UpdatePanel控件(一)
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/15364206.html
Copyright © 2020-2023  润新知