某王 老师今天考了一套三国题,AK了。。。就挑一道最恶心的题来写一写吧。
题目描述:
【题目背景】
公元215年,刘备取益州,孙权令诸葛瑾找刘备索要荆州。刘备不答应,孙权极为恼恨,便派吕蒙率军取长沙、零陵、桂阳三郡。长沙、桂阳蜀将当即投降。刘备得知后,亲自从成都赶到公安(今湖北公安),派大将关羽争夺三郡。孙权也随即进驻陆口,派鲁肃屯兵益阳,抵挡关羽。双方剑拔弩张,孙刘联盟面临破裂,在这紧要关头,鲁肃为了维护孙刘联盟,不给曹操可乘之机,决定当面和关羽商谈。“肃邀羽相见,各驻兵马百步上,但诸将军单刀俱会”。双方经过会谈,缓和了紧张局势。随后,孙权与刘备商定平分荆州,“割湘水为界,于是罢军”,孙刘联盟因此能继续维持。
【问题描述】
关羽受鲁肃邀请,为了大局,他决定冒险赴会。他带着侍从周仓,义子关平,骑着赤兔马,手持青龙偃月刀,从军营出发了,这就是历史上赫赫有名的“单刀赴会”。关羽平时因为军务繁重,决定在这次出行中拜访几个多日不见的好朋友。然而局势紧张,这次出行要在限定时间内完成,关公希望你能够帮助他安排一下行程,安排一种出行方式,使得从军营出发,到达鲁肃处赴会再回来,同时拜访到尽可能多的朋友,在满足这些条件下行程最短。注意拜访朋友可以在赴会之前,也可以在赴会之后。现在给出地图,请你完成接下来的任务。
输入
第一行n,m,k,t,代表有n个地点,m条道路,有k个朋友(不包括鲁肃),以及限定时间t(行走1单位长度的路程用时1单位时间)。
接下来m行,每行有x,y,w三个整数,代表x和y之间有长度为w的道路相连。
接下来一行有k个整数,代表朋友所在的都城编号(保证两两不同,且不在1和n)
(我们约定1是关羽的营地,n是鲁肃的营地)
输出
输出两个整数,分别是最多可以拜访的朋友数,以及在这种情况下最少需要耗费的时间,如果连到达鲁肃再回来都无法完成,输出一个-1就可以了。
样例输入
样例输出
提示
【数据规模和约定】
有10%数据,n<=10,m<=50,k<=5;
有10%数据,k=0;
有10%数据,k=1;
另30%数据,k<=5;
对于100%数据,n<=10000,m<=50000,k<=15,t<=2147483647,w<=10000
思路分析:
很清楚的数据范围,很好想的状压DP,很恶心的代码实现。
嗯,这就是我对这题的评价了。
读完题目,很清楚,整张图中只有k+2个点是有用的,分别为:关羽的营地、k个朋友的家以及鲁肃的营地。所以我们可以对其进行预处理,跑k+2遍单源最短路(我跑的是Dijkstra),然后就可以开始状压了!
既然是状压DP,那么我们应该压啥呢?——还能压啥啊?压k走起啊!
二进制状态sta,每一位上的0/1表示这个朋友也没有被访问过。那么我们就可以顺利地写出状态:dp[sta,i]表示在状态sta下,关羽现在正在第i位朋友的家中,所花费的时间的最小值。
那么我们便可以通过再枚举一个j表示关羽下一次要去第j个朋友的家,进行转移。转移方程便为:
dp[sta|1<<j-1,j]=min(dp[sta|1<<j-1,j],dp[sta,i]+d[i,a[j]]);
其中d数组,d[i,j]表示以i为源点到城市j的最小时间花费。a数组,a[i]表示关羽的第i位朋友住在城市a[i]。
时间复杂度就是n2*2n+k*(n+m)log n。
那么有些人可能会想:能不能用类似于【愤怒的小鸟】的优化方法把状压DP的时间优化成n*2n呢?
深入思考一下发现这其实是不可行的。
我们能把【愤怒的小鸟】优化掉一个n是因为每一只猪都必须被打掉,而且先打和后打是没有区别的,所以我们可以强制让他打一只猪,而这题不一样,关羽并不是一定要访问完k个朋友,没有他一定要访问的朋友,所以不能采用类似的方法来优化。
代码实现:
type hehe=record dist,id:longint; end; var f:array[1..2000000]of hehe; s:array[1..150000]of longint; dp:array[0..150000,0..20]of longint; a:array[0..20]of longint; head,visit:array[1..10000]of longint; d:array[1..20,1..10000]of longint; next,vet,dist:array[1..100000]of longint; n,m,t,i,j,k,sta,weight,x,y,z,tot,oo,ans,mi:longint; procedure add(x,y,z:longint); begin inc(tot); next[tot]:=head[x]; head[x]:=tot; vet[tot]:=y; dist[tot]:=z; end; function min(x,y:longint):longint; begin if x<y then exit(x) else exit(y); end; procedure swap(x,y:longint); var t:hehe; begin t:=f[x]; f[x]:=f[y]; f[y]:=t; end; procedure doit(x,k:longint); begin if x>1<<17 then exit; s[x]:=k; doit(x*2,k); doit(x*2+1,k+1); end; procedure up(x:longint); begin if x=1 then exit; if f[x].dist<f[x div 2].dist then begin swap(x,x div 2); up(x div 2); end; end; procedure down(x:longint); var k:longint; begin if x*2>weight then exit; k:=min(f[x*2].dist,f[x*2+1].dist); if f[x].dist>k then if k=f[x*2].dist then begin swap(x,x*2); down(x*2); end else begin swap(x,x*2+1); down(x*2+1); end; end; procedure push(x,id:longint); begin inc(weight); f[weight].dist:=x; f[weight].id:=id; up(weight); end; procedure pop; begin x:=f[1].id; f[1].dist:=f[weight].dist; f[1].id:=f[weight].id; f[weight].dist:=oo; f[weight].id:=oo; dec(weight); down(1); end; procedure dijkstra(k,s:longint); var y,i:longint; begin fillchar(f,sizeof(f),$7f); fillchar(visit,sizeof(visit),0); push(0,s); d[k,s]:=0; while weight>0 do begin pop; if visit[x]=1 then continue; i:=head[x]; visit[x]:=1; while i<>0 do begin y:=vet[i]; if d[k,y]>d[k,x]+dist[i] then begin d[k,y]:=d[k,x]+dist[i]; push(d[k,y],y); end; i:=next[i]; end; end; end; begin doit(1,1); read(n,m,k,t); for i:=1 to m do begin read(x,y,z); add(x,y,z); add(y,x,z); end; fillchar(d,sizeof(d),$7f); oo:=d[1,1]; dijkstra(1,1); inc(k); a[1]:=1; for i:=2 to k do begin read(a[i]); dijkstra(i,a[i]); end; inc(k); a[k]:=n; dijkstra(k,n); fillchar(dp,sizeof(dp),$7f); dp[1,1]:=0; for sta:=1 to 1<<k-2 do for i:=1 to k do if dp[sta,i]<>oo then for j:=2 to k do dp[(sta)or(1<<(j-1)),j]:=min(dp[(sta)or(1<<(j-1)),j],dp[sta,i]+d[i,a[j]]); mi:=oo; for sta:=1 to 1<<k-1 do if sta>>(k-1)=1 then for i:=2 to k do if dp[sta,i]+d[i,1]<=t then if s[sta]-2>ans then begin ans:=s[sta]-2; mi:=dp[sta,i]+d[i,1]; end else if (s[sta]-2=ans)and(dp[sta,i]+d[i,1]<mi) then mi:=dp[sta,i]+d[i,1]; if mi=oo then writeln(-1) else writeln(ans,' ',mi); end.