• 题解——城市猎人


    题目描述:

    (n) 个城市,标号为 (1)(n),第 (i) 天时,若 (gcd(a,b)=m-i+1),则标号为 (a) 的城 市和标号为 (b) 的城市会建好一条直接相连的道路,有多次询问,每次询问某两座 城市最早什么时候能联通。

    大体思路:

    首先解决建边问题,我们不可能去枚举每一对点,然后判断它们是否联通。

    对于询问,其实我们只要找出它的一颗最小生成树即可。

    所以我们枚举(gcd),对于每一个(gcd),我们只需要考虑(gcd)与它的倍数之间的连边即可。

    考虑并查集,如果这两个点不在同一个并查集中便连边。

    之后可以用树上倍增解决,但是我为了追求理论时间复杂度,就用了(LCT)

    然鹅,被(O(n log^2 n))的树上倍增吊打。。。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    const int N=2e5+5;
    int w[N],val[N],ch[N][2],fa[N],rev[N],f[N];
    int n,m,q,x,y,tot;
    int gcd(int a,int b){return a%b==0?b:gcd(b,a%b);}
    int find(int x){return f[x]==x?f[x]:f[x]=find(f[x]);}
    bool wh(int x){return ch[fa[x]][1]==x;}
    bool isrt(int x){return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x;}
    void rever(int x){rev[x]^=1,swap(ch[x][0],ch[x][1]);}
    void update(int x){val[x]=max(max(val[ch[x][0]],val[ch[x][1]]),w[x]);}
    void pushdown(int x){
    	if (rev[x]){
    		if (ch[x][0]) rever(ch[x][0]);
    		if (ch[x][1]) rever(ch[x][1]);
    		rev[x]=0;
    	}
    }
    void Allpushdown(int x){
    	if (!isrt(x)) Allpushdown(fa[x]);
    	pushdown(x);
    }
    void rotate(int x){
    	int y=fa[x],z=fa[y],c=wh(x);
    	if (!isrt(y)) ch[z][wh(fa[x])]=x;
    	fa[x]=z;
    	ch[y][c]=ch[x][c^1];
    	fa[ch[y][c]]=y;
    	ch[x][c^1]=y;
    	fa[y]=x;
    	update(y),update(x);
    }
    void splay(int x){
    	Allpushdown(x);
    	for (;!isrt(x);rotate(x))
    		if (!isrt(fa[x])) rotate(wh(x)==wh(fa[x])?fa[x]:x);
    }
    void access(int x){
    	for (int y=0;x;y=x,x=fa[x]) splay(x),ch[x][1]=y,update(x);
    }
    void makert(int x){
    	access(x),splay(x),rever(x);
    }
    void link(int x,int y){
    	makert(x),fa[x]=y;
    }
    int main(){
    	freopen("pictionary.in","r",stdin);
    	freopen("pictionary.out","w",stdout);
    	scanf("%d%d%d",&n,&m,&q);
    	for (int i=1;i<=n;i++) f[i]=i;
    	for (int i=m;i>=1;i--){
    		if (tot==n-1) break;
    		for (int j=1;j*i<=n;j++){
    			if (tot==n-1) break;
    			int f1=find(i),f2=find(i*j);
    			if (f1!=f2){
    				++tot;
    				w[tot+n]=m-i+1;
    				f[f1]=f2;
    				link(i*j,tot+n),link(i,tot+n);
    				if (tot==n-1) break;
    			}
    		}
    	}
    	for (int i=1;i<=q;i++){
    		scanf("%d%d",&x,&y);
    		makert(x),access(y),splay(y);
    		printf("%d
    ",val[y]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    iOS开发编程英语(单词带音标)
    iOS多线程管理-Thread,NSOperation,GCD的简单用法
    AFN下载文件的随笔
    HTML5/CSS3动画应用
    Android 常用基础
    Java JDK8 安装及环境变量配置
    Jquery扩展- 倒计时
    页面中引入带中文的JS文件乱码问题
    曾经记录——asp.net中的点滴
    Linux Mono OpenShift Cloud9 rhc
  • 原文地址:https://www.cnblogs.com/WR-Eternity/p/11269874.html
Copyright © 2020-2023  润新知