• BZOJ 2956: 模积和


    题目

    2956: 模积和

    Time Limit: 10 Sec  Memory Limit: 128 MB
    Submit: 554  Solved: 257
    [Submit][Status]

    Description

     求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。

      

    Input

    第一行两个数n,m。

    Output

      一个整数表示答案mod 19940417的值

    Sample Input


    3 4

    Sample Output

    1

    样例说明
      答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4) = 1

    数据规模和约定
      对于100%的数据n,m<=10^9。

    题解

    这道题目我调了好久,有两点错:一是乱用除法QAQ,要乘逆元才对!二是错误的估计了结果的大小,少用了几个%。虽然取模的数很小,但是两个乘在一起照样让你爆精度!每步都要取模!

    这题的思路是分别计算∑∑((n mod i)*(m mod j))和∑∑((n mod i)*(m mod j))[i==j]的值,并且作差。

    最后化简得式子是

    ∑∑((n mod i) * (m mod j)) 1<=i<=n, 1<=j<=m, i≠j=

    ∑(n mod i) * ∑(m mod i) - ∑((n mod i) * (m mod i))=

    ∑(n-[n/i]*i) * ∑(m-[m/i]*i) - ∑(nm-([n/i]+[m/i])i+[n/i][m/i]*i*i)【右式中[]表示下取整】

    代码

     1 /*Author:WNJXYK*/
     2 #include<cstdio>
     3 #include<iostream>
     4 using namespace std;
     5 const long long M=19940417;
     6 
     7 long long n,m;
     8 
     9 
    10 inline int remin(int a,int b){
    11     if (a<b) return a;
    12     return b;
    13 }
    14 
    15 inline long long sum(long long n){  
    16     return n*(n+1)%M*(2*n+1)%M*3323403%M;  
    17 } 
    18 
    19 inline long long getDist(int x,int y){
    20     return (x+y)%M*(y-x+1)%M*9970209%M;
    21 } 
    22 
    23 inline long long getOneAns(long long x){
    24     long long ans=((long long)x*(long long)x)%M;
    25     long long pos;
    26     for (long long i=1;i<=x;i=pos+1){
    27         pos=remin(x/(x/i),x);
    28         //cout<<"+"<<(long long)x*(long long)(pos-i+1)%M<<endl;
    29         //cout<<"-"<<((long long)((long long)(pos)*(long long)(pos+1)/(long long)2-(long long)(i-1)*(long long)(i)/(long long)2)*(long long)(x/i))%M<<endl;
    30         //cout<<"x"<<(long long)(pos)*(long long)(pos+1)/(long long)2-(long long)(i-1)*(long long)(i)/(long long)2<<endl;
    31         //ans=ans-((long long)getDist(i,pos)%M*(long long)(x/i))%M;
    32         ans-=(x/i)*getDist(i,pos)%M;
    33         while(ans<0) ans+=M;
    34     }
    35     //cout<<endl;
    36     while(ans<0) ans+=M;
    37     return ans;
    38 } 
    39 
    40 inline long long getTwoAns(long long x1,long long x2){
    41     long long ans=0;
    42     long long pos;
    43     long long x=remin(x1,x2);
    44     ans=x%M*x1%M*x2%M;
    45     for (long long i=1;i<=x;i=pos+1){
    46         pos=remin(x1/(x1/i),x2/(x2/i));
    47         //cout<<"POS"<<i<<"~"<<pos<<endl;
    48         //cout<<"+"<<(long long)(pos-i+1)*(long long)x1*(long long)x2<<endl;
    49         //cout<<"-"<<(long long)x1*(long long)(x2/i)*getDist(i,pos)<<endl;
    50         ///cout<<"-"<<(long long)x2*(long long)(x1/i)*getDist(i,pos)<<endl;
    51         //cout<<"+"<<((long long)((long long)x1/(long long)i)*(long long)((long long)x2/(long long)i))*getSDist(i,pos)<<endl;
    52         //cout<<"————————————"<<endl;
    53         ans=ans-(long long)x1%M*(long long)(x2/i)%M*getDist(i,pos)%M-(long long)x2%M*(long long)(x1/i)%M*getDist(i,pos)%M+((long long)((long long)x1/(long long)i)%M*(long long)((long long)x2/(long long)i))%M*(sum(pos)-sum(i-1))%M;
    54         while(ans<0) ans+=M;
    55     }
    56     while(ans<0) ans+=M;
    57     return ans;
    58 }
    59 
    60 int main(){
    61     scanf("%lld%lld",&n,&m);
    62     long long Ans=((long long)getOneAns(n)*(long long)getOneAns(m))%M;
    63     Ans-=getTwoAns(n,m);
    64     //cout<<getOneAns(n)<<endl;
    65     //cout<<getOneAns(m)<<endl;
    66     //cout<<getTwoAns(n,m)<<endl;
    67     while(Ans<0) Ans+=M;
    68     printf("%lld
    ",Ans%M);
    69     return 0;
    70 }
    View Code
  • 相关阅读:
    Android学习笔记安卓基础知识
    V8编程1
    dfdf
    NodeJS沙箱
    CGI编程cgihtml库简析
    dsfdsf
    Android学习笔记获取屏幕大小
    Android学习笔记AndroidManifest.xml配置文件详解
    HTTP状态码解析
    简易c++版本日志库
  • 原文地址:https://www.cnblogs.com/WNJXYK/p/4068269.html
Copyright © 2020-2023  润新知