**链接:****传送门 **
题意:
- n个小朋友围成一个环( 2 <= n <= 100 )然后进行m次的游戏。
一开始,第 i 个小朋友有 Ai 个苹果。
定义游戏的规则为:每一次游戏处于 i 位置的小朋友获得( L* A(i+n-1)%n+R * A(i+1)%n )个苹果( 题目有误 )
求 m 次游戏后每个小朋友的苹果数量。
思路:
- 一开始没有看到获得这两个字,gg,,也就是说 A(i) = L* A(i+n-1)%n+R * A(i+1)+A(i) ,那这道题与HDU 2276 Kiki & Little Kiki 2( <-戳前面链接 )就基本一模一样了,但是这道题如果不用循环矩阵优化就直接T掉了!
/*************************************************************************
> File Name: fzu1692t3.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月04日 星期四 19时23分56秒
************************************************************************/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int MOD;
const int maxn = 110;
#define ll long long
#define mod(x) ((x)%MOD)
#define cls(x) memset(x,0,sizeof(x))
struct mat{
int m[maxn][maxn];
}unit;
int t,n,m,L,R;
void init_unit(){
for(int i=0;i<maxn;i++) unit.m[i][i] = 1;
}
// 利用循环矩阵降低复杂度
mat operator *(mat a,mat b){
mat ret;
cls(ret.m); // 初始化一下以防出错
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
ret.m[0][i] = mod( ret.m[0][i] + mod(a.m[0][j]*b.m[j][i]) );
for(int i=1;i<n;i++)
for(int j=0;j<n;j++)
ret.m[i][j] = ret.m[i-1][(j-1+n)%n];
return ret;
}
mat pow_mat(mat a,int x){
mat ret = unit;
while(x){
if(x&1) ret = ret*a;
a = a*a;
x >>= 1;
}
return ret;
}
mat a,b;
void init(){
cls(a.m);
for(int i=0;i<n;i++){
a.m[i][ (i-1+n)%n ] = R;
a.m[i][ i+1 ] = L;
a.m[i][i] = 1;
}
}
int main(){
init_unit();
int aa[maxn];
cin>>t;
while(t--){
cin>>n>>m>>L>>R>>MOD;
for(int i=0;i<n;i++) scanf("%d",aa+i);
init();
mat ans = pow_mat(a,m);
for(int i=0;i<n;i++){
ll tmp = 0;
for(int j=0;j<n;j++)
tmp = mod(tmp + mod(ans.m[i][j]*aa[j]));
ans.m[i][0] = tmp;
}
for(int i=0;i<n-1;i++) printf("%d ",ans.m[i][0]);
printf("%d
",ans.m[n-1][0]);
}
return 0;
}