题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5456
Description
As an exciting puzzle game for kids and girlfriends, the Matches Puzzle Game asks the player to find the number of possible equations A−B=C with exactly n (5≤n≤500) matches (or sticks).
In these equations, A,B and C are positive integers. The equality sign needs two matches and the sign of subtraction needs just one. Leading zeros are not allowed.
Please answer the number, modulo a given integer m (3≤m≤2×109).
Input
The input contains several test cases. The first line of the input is a single integer t which is the number of test cases. Then t (1≤t≤30) test cases follow.
Each test case contains one line with two integers n (5≤n≤500) and m (3≤m≤2×109).
Output
For each test case, you should output the answer modulo m.
Sample Input
4
12 1000000007
17 1000000007
20 1000000007
147 1000000007
Sample Output
Case #1: 1
Case #2: 5
Case #3: 38
Case #4: 815630825
分析
题目求用N根火柴棒拼成A-B=C这种等式的方案数。
化成加法形式B+C=A,这样比较好写。
类似加法竖式的样子,从低位到高位,考虑DP:
- dp[n][0/1][0/1][0/1]表示,还剩下的火柴棒数为n,是否向下一位进位,B最高位是否已确定,C最高位是否已确定
按字面意思转移。。
代码
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; long long d[555][2][2][2]; int cost[10]={6,2,5,5,4,5,6,3,7,6}; int main(){ int t,n; long long m; scanf("%d",&t); for(int cse=1; cse<=t; ++cse){ scanf("%d%I64d",&n,&m); n-=3; memset(d,0,sizeof(d)); d[n][0][0][0]=1; for(int len=n; len>0; --len){ for(int i=0; i<=9; ++i){ for(int j=0; j<=9; ++j){ if(cost[i]+cost[j]>len) continue; int tmp0=len-cost[i]-cost[j]-cost[(i+j)%10]; int tmp1=len-cost[i]-cost[j]-cost[(i+j+1)%10]; if(tmp0>=0) d[tmp0][i+j>9][0][0]+=d[len][0][0][0],d[tmp0][i+j>9][0][0]%=m; if(tmp1>=0) d[tmp1][i+j+1>9][0][0]+=d[len][1][0][0],d[tmp1][i+j+1>9][0][0]%=m; if(i){ if(tmp0>=0) d[tmp0][i+j>9][1][0]+=d[len][0][0][0],d[tmp0][i+j>9][1][0]%=m; if(tmp1>=0) d[tmp1][i+j+1>9][1][0]+=d[len][1][0][0],d[tmp1][i+j+1>9][1][0]%=m; } if(j){ if(tmp0>=0) d[tmp0][i+j>9][0][1]+=d[len][0][0][0],d[tmp0][i+j>9][0][1]%=m; if(tmp1>=0) d[tmp1][i+j+1>9][0][1]+=d[len][1][0][0],d[tmp1][i+j+1>9][0][1]%=m; } if(i&&j){ if(tmp0>=0) d[tmp0][i+j>9][1][1]+=d[len][0][0][0],d[tmp0][i+j>9][1][1]%=m; if(tmp1>=0) d[tmp1][i+j+1>9][1][1]+=d[len][1][0][0],d[tmp1][i+j+1>9][1][1]%=m; } } } for(int i=0; i<=9; ++i){ int tmp0=len-cost[i]-cost[i]; int tmp1=len-cost[i]-cost[(i+1)%10]; if(tmp0>=0) d[tmp0][0][0][1]+=d[len][0][0][1],d[tmp0][0][0][1]%=m; if(tmp1>=0) d[tmp1][i+1>9][0][1]+=d[len][1][0][1],d[tmp1][i+1>9][0][1]%=m; if(tmp0>=0) d[tmp0][0][1][0]+=d[len][0][1][0],d[tmp0][0][1][0]%=m; if(tmp1>=0) d[tmp1][i+1>9][1][0]+=d[len][1][1][0],d[tmp1][i+1>9][1][0]%=m; if(i){ if(tmp0>=0) d[tmp0][0][1][1]+=d[len][0][0][1],d[tmp0][0][1][1]%=m; if(tmp1>=0) d[tmp1][i+1>9][1][1]+=d[len][1][0][1],d[tmp1][i+1>9][1][1]%=m; if(tmp0>=0) d[tmp0][0][1][1]+=d[len][0][1][0],d[tmp0][0][1][1]%=m; if(tmp1>=0) d[tmp1][i+1>9][1][1]+=d[len][1][1][0],d[tmp1][i+1>9][1][1]%=m; } } } long long res=(d[0][0][1][1]+d[cost[1]][1][1][1])%m; printf("Case #%d: %I64d ",cse,res); } return 0; }