• LightOJ1171 Knights in Chessboard (II)(二分图最大点独立集)


    题目

    Source

    http://www.lightoj.com/volume_showproblem.php?problem=1171

    Description

    Given an m x n chessboard where some of the cells are broken. Now you are about to place chess knights in the chessboard. You have to find the maximum number of knights that can be placed in the chessboard such that no two knights attack each other. You can't place knights in the broken cells.

    Those who are not familiar with chess knights, note that a chess knight can attack eight positions in the board as shown in the picture below.

    Input

    Input starts with an integer T (≤ 125), denoting the number of test cases.

    Each case starts with a blank line. The next line contains three integers m, n, K (1 ≤ m, n ≤ 200). Here m and n corresponds to the number of rows and the number of columns of the board respectively. Each of the next K lines will contain two integers x, y (1 ≤ x ≤ m, 1 ≤ y ≤ n) denoting that the cell(x, y) is broken already. No broken cell will be reported more than once.

    Output

    For each case of input, print the case number and the maximum number of knights that can be placed in the board considering the above restrictions.

    Sample Input

    2

    8 8 0

    2 5 4
    1 3
    1 4
    2 3
    2 4

    Sample Output

    Case 1: 32
    Case 2: 6

    分析

    题目大概说一个n*m的国际象棋棋盘上有些格子不能放棋子,问最多能放几个骑士使得它们都不会处于互相攻击的状态。

    棋盘黑白染色,形成二分图,然后就是二分图最大点独立集模型了,结果即为所有点数-二分图最大匹配。

    代码

    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<algorithm>
    using namespace std;
    #define INF (1<<30)
    #define MAXN 44444
    #define MAXM 44444*22
     
    struct Edge{
        int v,cap,flow,next;
    }edge[MAXM];
    int vs,vt,NE,NV;
    int head[MAXN];
     
    void addEdge(int u,int v,int cap){
        edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0;
        edge[NE].next=head[u]; head[u]=NE++;
        edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0;
        edge[NE].next=head[v]; head[v]=NE++;
    }
     
    int level[MAXN];
    int gap[MAXN];
    void bfs(){
        memset(level,-1,sizeof(level));
        memset(gap,0,sizeof(gap));
        level[vt]=0;
        gap[level[vt]]++;
        queue<int> que;
        que.push(vt);
        while(!que.empty()){
            int u=que.front(); que.pop();
            for(int i=head[u]; i!=-1; i=edge[i].next){
                int v=edge[i].v;
                if(level[v]!=-1) continue;
                level[v]=level[u]+1;
                gap[level[v]]++;
                que.push(v);
            }
        }
    }
     
    int pre[MAXN];
    int cur[MAXN];
    int ISAP(){
        bfs();
        memset(pre,-1,sizeof(pre));
        memcpy(cur,head,sizeof(head));
        int u=pre[vs]=vs,flow=0,aug=INF;
        gap[0]=NV;
        while(level[vs]<NV){
            bool flag=false;
            for(int &i=cur[u]; i!=-1; i=edge[i].next){
                int v=edge[i].v;
                if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){
                    flag=true;
                    pre[v]=u;
                    u=v;
                    //aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
                    aug=min(aug,edge[i].cap-edge[i].flow);
                    if(v==vt){
                        flow+=aug;
                        for(u=pre[v]; v!=vs; v=u,u=pre[u]){
                            edge[cur[u]].flow+=aug;
                            edge[cur[u]^1].flow-=aug;
                        }
                        //aug=-1;
                        aug=INF;
                    }
                    break;
                }
            }
            if(flag) continue;
            int minlevel=NV;
            for(int i=head[u]; i!=-1; i=edge[i].next){
                int v=edge[i].v;
                if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
                    minlevel=level[v];
                    cur[u]=i;
                }
            }
            if(--gap[level[u]]==0) break;
            level[u]=minlevel+1;
            gap[level[u]]++;
            u=pre[u];
        }
        return flow;
    }
    
    bool map[222][222];
    int dx[]={1,1,-1,-1,2,2,-2,-2};
    int dy[]={2,-2,2,-2,1,-1,1,-1};
    int main(){
    	int t,n,m,k;
    	scanf("%d",&t);
    	for(int cse=1; cse<=t; ++cse){
    		scanf("%d%d%d",&n,&m,&k);
    		memset(map,0,sizeof(map));
    		int a,b,tot=n*m;
    		while(k--){
    			scanf("%d%d",&a,&b);
    			--a; --b;
    			map[a][b]=1;
    		}
    		for(int i=0; i<n; ++i){
    			for(int j=0; j<m; ++j){
    				if(map[i][j]) --tot;
    			}
    		}
    		vs=n*m; vt=vs+1; NV=vt+1; NE=0;
    		memset(head,-1,sizeof(head));
    		for(int i=0; i<n*m; ++i){
    			int x=i/m,y=i%m;
    			if(map[x][y]) continue;
    			if(x+y&1) addEdge(i,vt,1);
    			else{
    				addEdge(vs,i,1);
    				for(int j=0; j<8; ++j){
    					int nx=x+dx[j],ny=y+dy[j];
    					if(nx<0 || nx>=n || ny<0 || ny>=m || map[nx][ny]) continue;
    					addEdge(i,nx*m+ny,1);
    				}
    			}
    		}
    		printf("Case %d: %d
    ",cse,tot-ISAP());
    	}
    	return 0;
    }
    
  • 相关阅读:
    为什么在SqlServer流水模式下,事务无法启动?
    默认web站点被删除,如何设置新的默认站点?
    用C#实现基于TCP协议的网络通讯
    如何通过DataRelation关联两个DataGrid,实现主从表。
    如何设置网站的会话时间?
    性能测试基本概念释疑
    C#中如何获取服务器IP,名称,操作系统,客户端IP,名称!
    DataGridComboBoxColumn控件
    端口基础知识
    P2P之UDP穿透NAT的原理与实现
  • 原文地址:https://www.cnblogs.com/WABoss/p/5919192.html
Copyright © 2020-2023  润新知