• HDU4307 Matrix(最小割)


    题目

    Source

    http://acm.hdu.edu.cn/showproblem.php?pid=4307

    Description

    Let A be a 1*N matrix, and each element of A is either 0 or 1. You are to find such A that maximize D=(A*B-C)*AT, where B is a given N*N matrix whose elements are non-negative, C is a given 1*N matrix whose elements are also non-negative, and AT is the transposition of A (i.e. a N*1 matrix).

    Input

    The first line contains the number of test cases T, followed by T test cases.
    For each case, the first line contains an integer N (1<=N<=1000).
    The next N lines, each of which contains N integers, illustrating the matrix B. The jth integer on the ith line is B[i][j].
    Then one line followed, containing N integers, describing the matrix C, the ith one for C[i].
    You may assume that sum{B[i][j]} < 2^31, and sum{C[i]} < 2^31.

    Output

    For each case, output the the maximum D you may get.

    Sample Input

    1
    3
    1 2 1
    3 1 0
    1 2 3
    2 3 7

    Sample Output

    2

    分析

    化一下那个矩阵,可以知道,目标是最大化这个:

    $$D = sum_{i=1}^N sum_{j=1}^N A_iA_jB_{ij} - sum_{i=1}^NC_i$$

    这样就是100多W个点的最大权闭合子图了= =。。

    其实式子还可以再化。。 http://blog.csdn.net/weiguang_123/article/details/8077385

    然后就化成了最小割的经典二者选一的模型了,POJ3469

    这我一点都化不来= =。。

    代码

    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<algorithm>
    using namespace std;
    #define INF (1<<30)
    #define MAXN 1111
    #define MAXM 2222*1111
     
    struct Edge{
        int v,cap,flow,next;
    }edge[MAXM];
    int vs,vt,NE,NV;
    int head[MAXN];
     
    void addEdge(int u,int v,int cap){
        edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0;
        edge[NE].next=head[u]; head[u]=NE++;
        edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0;
        edge[NE].next=head[v]; head[v]=NE++;
    }
     
    int level[MAXN];
    int gap[MAXN];
    void bfs(){
        memset(level,-1,sizeof(level));
        memset(gap,0,sizeof(gap));
        level[vt]=0;
        gap[level[vt]]++;
        queue<int> que;
        que.push(vt);
        while(!que.empty()){
            int u=que.front(); que.pop();
            for(int i=head[u]; i!=-1; i=edge[i].next){
                int v=edge[i].v;
                if(level[v]!=-1) continue;
                level[v]=level[u]+1;
                gap[level[v]]++;
                que.push(v);
            }
        }
    }
     
    int pre[MAXN];
    int cur[MAXN];
    int ISAP(){
        bfs();
        memset(pre,-1,sizeof(pre));
        memcpy(cur,head,sizeof(head));
        int u=pre[vs]=vs,flow=0,aug=INF;
        gap[0]=NV;
        while(level[vs]<NV){
            bool flag=false;
            for(int &i=cur[u]; i!=-1; i=edge[i].next){
                int v=edge[i].v;
                if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){
                    flag=true;
                    pre[v]=u;
                    u=v;
                    //aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
                    aug=min(aug,edge[i].cap-edge[i].flow);
                    if(v==vt){
                        flow+=aug;
                        for(u=pre[v]; v!=vs; v=u,u=pre[u]){
                            edge[cur[u]].flow+=aug;
                            edge[cur[u]^1].flow-=aug;
                        }
                        //aug=-1;
                        aug=INF;
                    }
                    break;
                }
            }
            if(flag) continue;
            int minlevel=NV;
            for(int i=head[u]; i!=-1; i=edge[i].next){
                int v=edge[i].v;
                if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
                    minlevel=level[v];
                    cur[u]=i;
                }
            }
            if(--gap[level[u]]==0) break;
            level[u]=minlevel+1;
            gap[level[u]]++;
            u=pre[u];
        }
        return flow;
    }
    
    int B[1111][1111],C[1111];
    
    int main(){
    	int t,n;
    	scanf("%d",&t);
    	while(t--){
    		scanf("%d",&n);
    		int sum=0;
    		for(int i=1; i<=n; ++i){
    			for(int j=1; j<=n; ++j){
    				scanf("%d",&B[i][j]);
    				sum+=B[i][j];
    			}
    		}
    		for(int i=1; i<=n; ++i){
    			scanf("%d",&C[i]);
    		}
    		vs=0; vt=n+1; NV=vt+1; NE=0;
    		memset(head,-1,sizeof(head));
    		for(int i=1; i<=n; ++i){
    			addEdge(vs,i,C[i]);
    			int tmp=0;
    			for(int j=1; j<=n; ++j) tmp+=B[i][j];
    			addEdge(i,vt,tmp);
    			for(int j=1; j<=n; ++j){
    				if(i!=j) addEdge(j,i,B[i][j]);
    			}
    		}
    		printf("%d
    ",sum-ISAP());
    	}
    	return 0;
    }
    
  • 相关阅读:
    上传文件
    vue 动态数据请求
    Layui——layerjs 用法汇总(持续更新)
    以插入排序为例子带你彻底理解算法中的时间复杂度和各种渐进符号
    flappy pig小游戏源码分析(4)——核心pig模块(未完待续)
    flappy pig小游戏源码分析(3)——解剖util
    flappy pig小游戏源码分析(2)——解剖option
    flappy pig小游戏源码分析(1)——主程序初探
    Express细节探究(1)——app.use(express.static)
    部分常用Express方法详解
  • 原文地址:https://www.cnblogs.com/WABoss/p/5802323.html
Copyright © 2020-2023  润新知