• HDU5834 Magic boy Bi Luo with his excited tree(树形DP)


    题目

    Source

    http://acm.hdu.edu.cn/showproblem.php?pid=5834

    Description

    Bi Luo is a magic boy, he also has a migic tree, the tree has N nodes , in each node , there is a treasure, it's value is V[i], and for each edge, there is a cost C[i], which means every time you pass the edge i , you need to pay C[i].

    You may attention that every V[i] can be taken only once, but for some C[i] , you may cost severial times.

    Now, Bi Luo define ans[i] as the most value can Bi Luo gets if Bi Luo starts at node i.

    Bi Luo is also an excited boy, now he wants to know every ans[i], can you help him?

    Input

    First line is a positive integer T(T≤104) , represents there are T test cases.

    Four each test:

    The first line contain an integer N(N≤105).

    The next line contains N integers V[i], which means the treasure’s value of node i(1≤V[i]≤104).

    For the next N−1 lines, each contains three integers u,v,c , which means node u and node v are connected by an edge, it's cost is c(1≤c≤104).

    You can assume that the sum of N will not exceed 106.

    Output

    For the i-th test case , first output Case #i: in a single line , then output N lines , for the i-th line , output ans[i] in a single line.

    Sample Input

    1
    5
    4 1 7 7 7
    1 2 6
    1 3 1
    2 4 8
    3 5 2

    Sample Output

    Case #1:
    15
    10
    14
    9
    15

    分析

    题目大概说给一棵树,点和边都有权值,经过一点可以加上该点的权值但最多只加一次,经过边会减去该边权值,问从各个点分别出发最多能获得多少权值。

    这题是很裸的一种树形DP,做过类似HDU2196就知道怎么做了。两个DFS分别在O(n)处理出两种信息,各个结点往其为根的子树走的信息各个结点往父亲走的信息,各个结点就能在O(1)合并这两个信息分别得出各个结点的最终信息。。

    对于这题需要的状态是:

    • dp_down[0/1][u]:u结点往其为根的子树走,并且不走回来/走回来,能得到的最大权值
    • dp_up[0/1][u]:u结点往其父亲向上走,并且不走回来/走回来,能得到的最大权值

    转移的话,想想就知道了。。dp_up[1][u]可以通过计算各个孩子信息的最大值和次大值求得,其他的比较简单,不过麻烦。。细节要注意,逻辑好考虑清楚。。比赛时我就没考虑好几个逻辑WA了,然后死活找不到错,还好队友A了。。

    代码

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define MAXN 111111
    
    struct Edge{
        int v,w,next;
    }edge[MAXN<<1];
    int NE,head[MAXN];
    void addEdge(int u,int v,int w){
        edge[NE].v=v; edge[NE].w=w; edge[NE].next=head[u];
        head[u]=NE++;
    }
    
    int val[MAXN];
    int d_down[2][MAXN],d_up[2][MAXN];
    
    void dfs1(int u,int fa){
        d_down[0][u]=d_down[1][u]=val[u];
        for(int i=head[u]; i!=-1; i=edge[i].next){
            int v=edge[i].v;
            if(v==fa) continue;
            dfs1(v,u);
            if(d_down[0][v]-2*edge[i].w>0) d_down[0][u]+=d_down[0][v]-2*edge[i].w;
        }
        int mx=0;
        for(int i=head[u]; i!=-1; i=edge[i].next){
            int v=edge[i].v;
            if(v==fa) continue;
            if(d_down[0][v]-2*edge[i].w>0){
                mx=max(mx,(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w));
            }else{
                mx=max(mx,d_down[1][v]-edge[i].w);
            }
        }
        d_down[1][u]=d_down[0][u]+mx;
    }
    void dfs2(int u,int fa){
    
        int mx1=0,mx2=0,tmp;
        for(int i=head[u]; i!=-1; i=edge[i].next){
            int v=edge[i].v;
            if(v==fa) continue;
            if(d_down[0][v]-2*edge[i].w>0) tmp=(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w);
            else tmp=d_down[1][v]-edge[i].w;
            if(mx1<tmp){
                mx2=mx1;
                mx1=tmp;
            }else if(mx2<tmp){
                mx2=tmp;
            }
        }
    
        for(int i=head[u]; i!=-1; i=edge[i].next){
            int v=edge[i].v;
            if(v==fa) continue;
    
            int tmp2;
            if(d_down[0][v]-2*edge[i].w>0){
                tmp2=d_down[0][u]-(d_down[0][v]-2*edge[i].w);
            }else{
                tmp2=d_down[0][u];
            }
            int mx=max(d_up[0][u]-2*edge[i].w,tmp2-2*edge[i].w);
            mx=max(mx,d_up[0][u]+tmp2-2*edge[i].w-val[u]);
            d_up[0][v]=val[v]+max(0,mx);
    
            if(d_down[0][v]-2*edge[i].w>0){
                if(mx1==(d_down[1][v]-edge[i].w)-(d_down[0][v]-2*edge[i].w)) tmp=d_down[1][u]-(d_down[1][v]-edge[i].w)+mx2;
                else tmp=d_down[1][u]-(d_down[0][v]-2*edge[i].w);
            }else if(d_down[1][v]-edge[i].w>0){
                if(mx1==d_down[1][v]-edge[i].w) tmp=d_down[1][u]-(d_down[1][v]-edge[i].w)+mx2;
                else tmp=d_down[1][u];
            }else tmp=d_down[1][u];
            mx=max(d_up[1][u]-edge[i].w,tmp-edge[i].w);
            mx=max(mx,max(d_up[0][u]+tmp-edge[i].w-val[u],d_up[1][u]+tmp2-edge[i].w-val[u]));
            d_up[1][v]=val[v]+max(0,mx);
    
            dfs2(v,u);
        }
    }
    
    int main(){
        int t;
        scanf("%d",&t);
        for(int cse=1; cse<=t; ++cse){
            NE=0;
            memset(head,-1,sizeof(head));
            int n;
            scanf("%d",&n);
            for(int i=1; i<=n; ++i){
                scanf("%d",val+i);
            }
            int a,b,c;
            for(int i=1; i<n; ++i){
                scanf("%d%d%d",&a,&b,&c);
                addEdge(a,b,c);
                addEdge(b,a,c);
            }
            dfs1(1,1);
            d_up[0][1]=d_up[1][1]=val[1];
            dfs2(1,1);
            printf("Case #%d:
    ",cse);
            for(int i=1; i<=n; ++i){
                printf("%d
    ",max(d_up[0][i]+d_down[1][i],d_up[1][i]+d_down[0][i])-val[i]);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    JAVA基础学习(7)之函数
    人与神话阅读笔记03
    学习进度八
    人月神话阅读笔记02
    NABCD原则
    人月神话阅读笔记01
    学习进度七
    学习进度六
    梦断代码阅读笔记03
    地铁系统初步思路
  • 原文地址:https://www.cnblogs.com/WABoss/p/5771931.html
Copyright © 2020-2023  润新知