题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5812
Description
In number theory, a prime is a positive integer greater than 1 that has no positive divisors other than 1 and itself. The distance between two positive integers x and y, denoted by d(x, y), is defined as the minimum number of multiplications by a prime or divisions (without a remainder) by a prime one can perform to transform x into y. For example, d(15, 50) = 3, because 50 = 15 * 2 * 5 / 3, and you have to perform two multiplications (*2, *5) and one division (/3) to transform 15 into 50.
For a set S of positive integers, which is initially empty, you are asked to implement the following types of operations on S.
1. I x: Insert x into S. If x is already in S, just ignore this operation.
2. D x: Delete x from S. If x is not in S, just ignore this operation.
3. Q x: Find out a minimum z such that there exists a y in S and d(x, y) = z.
Input
The input contains multiple test cases. The first line of each case contains an integer Q (1 <= Q <= 50000), indicating the number of operations. The following lines each contain a letter ‘I’, ‘D’ or ‘Q’, and an integer x (1 <= x <= 1000000).
Q = 0 indicates the end of the input.
The total number of operations does not exceed 300000.
Output
For each case, output “Case #X:” first, where X is the case number, starting from 1. Then for each ‘Q’ operation, output the result in a line; if S is empty when a ‘Q’ operation is to perform, output -1 instead.
Sample Input
12
I 20
I 15
Q 30
I 30
Q 30
D 10
Q 27
I 15
D 15
D 20
D 30
Q 5
0
Sample Output
Case #1:
1
0
3
-1
分析
题目大概说,定义d(x,y)为x通过乘或除以质数变为y的最少运算次数。现在有一个集合,有插入一个数到集合的操作,也有从集合中删除一个数的操作,还有查询操作:输出最小的d(a,b),a是所查询的数,b是集合中的任一数。
题解这么说的:
不难发现d(a, b) = f(a/gcd(a, b)) + f(b/gcd(a,b)),其中f(x)表示x的质因子个数. 因而当遇到操作Q x时,我们只需要枚举x的每个约数y,看属于当前集合的y的所有倍数z中f(z/y)的最小值为多少. 为了快速求出这个最小值,我们用C[y][s]表示当前集合中y的所有倍数z中使得f(z/y)=s的z的数量. 因为s的值不会超过20,所以可以用位压缩的方法,用D[y]表示y的倍数中哪些s值出现了,这样查询最小的s值可以通过位运算快速求出(因为时限是标程的3倍,所以也不会特意卡掉其它方法). 插入和删除x时同样可以通过枚举x约数的方法来更新C[y][s]和D[y]的值. 设M表示元素的最大值,因为1到M所有约数的数量是O(MlogM)的,所以算法的时间和空间复杂度也都是O(MlogM)的. 又因为操作数少于M,所以实际情况还会更好一些.
首先是d(a, b) = f(a/gcd(a, b)) + f(b/gcd(a,b)),这个是显然的,而f(x)可以通过线性筛求得。
然后,对于每一个查询,枚举约数cd(注意,这个约数的个数在1000000内最多为128个,即2*3*5*7*11*13*17=510510的约数个数)。
- f(a/cd)这个能求得;而对于f(b/cd),这个就需要在更新集合过程中做一些处理——
- 插入数x到集合时,同样也是枚举数x的约数d,然后把f(x/d)的值更新到各个约数d的信息中。对于从集合中删除数的操作同样反过来做。
- 于是对于各个cd,我们就能获得集合更新过程中最小的f(b/cd)。
更新集合维护各个约数最小的那个值,可以用官方题解说的那样,也能用网上其他题解用的multiset。
我都有尝试,代码见下。不过官方题解的做法我跑了1000多秒,写得太挫了吧。另外感觉,对一些东西都不敏感,约数个数,质因子个数等等其实都是很小的,没这种概念。
代码
multiset
#include<cstdio> #include<cstring> #include<set> #include<algorithm> using namespace std; int prime_cnt[1000001],prime[1000001],pn; bool vis[1000001]; multiset<int> mset[1000001]; void insert(int n){ if(vis[n]) return; vis[n]=1; for(long long i=1; i*i<=n; ++i){ if(n%i==0){ int tmp=n/i; mset[i].insert(prime_cnt[tmp]); if(tmp!=i) mset[tmp].insert(prime_cnt[i]); } } } void remove(int n){ if(!vis[n]) return; vis[n]=0; for(long long i=1; i*i<=n; ++i){ if(n%i==0){ int tmp=n/i; mset[i].erase(mset[i].find(prime_cnt[tmp])); if(tmp!=i) mset[tmp].erase(mset[tmp].find(prime_cnt[i])); } } } int query(int n){ int res=11111111; for(long long i=1; i*i<=n; ++i){ if(n%i==0){ int tmp=n/i; if(!mset[i].empty()){ res=min(res,prime_cnt[tmp]+*mset[i].begin()); } if(tmp!=i && !mset[tmp].empty()) res=min(res,prime_cnt[i]+*mset[tmp].begin()); } } if(res==11111111) return -1; return res; } int main(){ for(long long i=2; i<1000001; ++i){ if(!vis[i]) prime[pn++]=i,prime_cnt[i]=1; for(int j=0; j<pn && i*prime[j]<1000001; ++j){ vis[i*prime[j]]=true; prime_cnt[i*prime[j]]=prime_cnt[i]+1; if(i%prime[j]==0) break; } } int q,cse=0; while(~scanf("%d",&q) && q){ printf("Case #%d: ",++cse); memset(vis,0,sizeof(vis)); for(int i=0; i<1000001; ++i) mset[i].clear(); while(q--){ char op; int a; scanf(" %c",&op); scanf("%d",&a); if(op=='I'){ insert(a); }else if(op=='D'){ remove(a); }else{ printf("%d ",query(a)); } } } return 0; }
官方题解
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int prime_cnt[1000001],prime[1000001],pn; bool vis[1000001]; int C[1000001][20],D[1000001]; void insert(int n){ if(vis[n]) return; vis[n]=1; for(long long i=1; i*i<=n; ++i){ if(n%i) continue; int j=n/i; ++C[i][prime_cnt[j]]; D[i]|=(1<<prime_cnt[j]); if(i!=j){ ++C[j][prime_cnt[i]]; D[j]|=(1<<prime_cnt[i]); } } } void remove(int n){ if(!vis[n]) return; vis[n]=0; for(long long i=1; i*i<=n; ++i){ if(n%i) continue; int j=n/i; if(--C[i][prime_cnt[j]]==0) D[i]^=(1<<prime_cnt[j]); if(i!=j && --C[j][prime_cnt[i]]==0) D[j]^=(1<<prime_cnt[i]); } } int posi[1000001]; int query(int n){ int res=1111111; for(long long i=1; i*i<=n; ++i){ if(n%i) continue; int j=n/i; if(D[i]){ res=min(res,prime_cnt[j]+posi[D[i]&-D[i]]); } if(D[j]){ res=min(res,prime_cnt[i]+posi[D[j]&-D[j]]); } } if(res==1111111) return -1; return res; } int main(){ for(long long i=2; i<1000001; ++i){ if(!vis[i]) prime[pn++]=i,prime_cnt[i]=1; for(int j=0; j<pn && i*prime[j]<1000001; ++j){ vis[i*prime[j]]=true; prime_cnt[i*prime[j]]=prime_cnt[i]+1; if(i%prime[j]==0) break; } } for(int i=0; i<20; ++i){ posi[1<<i]=i; } char op; int a; int q,cse=0; while(~scanf("%d",&q) && q){ printf("Case #%d: ",++cse); memset(vis,0,sizeof(vis)); memset(C,0,sizeof(C)); memset(D,0,sizeof(D)); while(q--){ scanf(" %c",&op); scanf("%d",&a); if(op=='I'){ insert(a); }else if(op=='D'){ remove(a); }else{ printf("%d ",query(a)); } } } return 0; }