Description
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race using the T (2 ≤ T ≤ 100) cow trails throughout the pasture.
Each trail connects two different intersections (1 ≤ I1i ≤ 1,000; 1 ≤ I2i ≤ 1,000), each of which is the termination for at least two trails. The cows know the lengthi of each trail (1 ≤ lengthi ≤ 1,000), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
Input
- Line 1: Four space-separated integers: N, T, S, and E
- Lines 2..T+1: Line i+1 describes trail i with three space-separated integers: lengthi , I1i , and I2i
Output
- Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
Sample Input
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
Sample Output
10
分析
- 题意:给定一个T(2 <= T <= 100)条边的无向图,求S到E恰好经过N(2 <= N <= 1000000)条边的最短路。
- 分析:大致思路就是floyd+矩阵乘法。我们令C[S][E]表示S点到E点正好经过N条边的路径数。
- 接下来用Floyd每次使用一个中间点k去更新S,E之间的距离,那么更新成功表示S,E之间恰有一个点k时的最短路。我们做n次这样的操作就能够得出结果了。
- 我们用c[S][E]=max(c[S][E],a[S][k]+a[k][E])来进行路径长度更新。第二次将c[S][E]拷贝回到a[S][E]当中,并将c[S][E]重新置为inf,再做一次,则是在原来的基础上在S,E之间再用一个点k来松弛,这时候S,E之间实际上已经是两个点了,之后重复这么做就好了.
代码
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int inf = 0x7f7f7f7f; const int maxn = 1010; int K,M,S,T; int v[maxn],cnt,map[maxn][maxn],used[maxn]; int ans[maxn][maxn],dis[maxn][maxn],tmp[maxn][maxn]; void floyd(int c[][maxn],int a[][maxn],int b[maxn][maxn]){ int i,j,k; for(k=0;k<cnt;k++){ for(i=0;i<cnt;i++){ for(j=0;j<cnt;j++){ if(c[v[i]][v[j]]>a[v[i]][v[k]]+b[v[k]][v[j]]) c[v[i]][v[j]]=a[v[i]][v[k]]+b[v[k]][v[j]]; } } } } void copy(int a[][maxn],int b[][maxn]){ int i,j; for(i=0;i<cnt;i++){ for(j=0;j<cnt;j++){ a[v[i]][v[j]]=b[v[i]][v[j]]; b[v[i]][v[j]]=inf; } } } void solve(int k){ while(k){ if(k%2){ floyd(dis,ans,map); copy(ans,dis); } floyd(tmp,map,map); copy(map,tmp); k=k/2; } } int main(){ int i,j; int x,y,val; while(scanf("%d%d%d%d",&K,&M,&S,&T)==4){ for(i=0;i<=1001;i++){ for(j=0;j<=1001;j++){ map[i][j]=inf; ans[i][j]=inf; tmp[i][j]=inf; dis[i][j]=inf; } ans[i][i]=0; } memset(used,0,sizeof(used)); cnt=0; for(i=0;i<M;i++){ scanf("%d%d%d",&val,&x,&y); if(map[x][y]>val){ map[x][y]=val; map[y][x]=map[x][y]; } if(!used[x]){ used[x]=1; v[cnt++]=x; } if(!used[y]){ used[y]=1; v[cnt++]=y; } } solve(K); printf("%d ",ans[S][T]); } return 0; }