• BZOJ2599


    Portal

    Description

    给出一棵(nleq2 imes10^5)个点的带边权树,求所有长度等于(k(kleq10^6))的简单路径中最少的边数。

    Solution

    用类似树形DP的方法,记录(pre[i])表示前若干棵子树中所有以根(rt)为起点的长度为(i)的路径中最少的边数,初始值为(pre[0]=0),其余为(+infty)。那么当我们在当前子树中找到一个距根距离为(dst),深度为(dpt)的点时,我们就可以用(pre[k-dst]+dpt)来更新答案。用当前子树内的所有点更新完(ans)后,就将其合并到(pre)中,然后计算下一个子树的贡献。
    需要注意的是,每次进行分治前不能使用memset来初始化(pre)!!!因为这样每次分治时的复杂度都为(O(siz)),总复杂度就成了(O(ncdot siz))了。所以分治结束前要手动(DFS)一下来重置(pre)。并且在(DFS)时如果当前点的(dst)已经大于(k)的话就直接返回,后面的点既没必要做也开不了数组。

    时间复杂度(O(nlogn))

    Code

    //[IOI2011]Race
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    using std::max; using std::min;
    typedef std::pair<int,int> prInt;
    inline char gc()
    {
        static char now[1<<16],*s,*t;
        if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
        return *s++;
    }
    inline int read()
    {
        int x=0; char ch=gc();
        while(ch<'0'||'9'<ch) ch=gc();
        while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
        return x;
    }
    int const N=2e5+10;
    int const K=1e6+10;
    int const INF=0x3F3F3F3F;
    int n,k;
    int cnt,h[N];
    struct edge{int v,w,nxt;} ed[N<<1];
    void edAdd(int u,int v,int w)
    {
    	cnt++; ed[cnt].v=v,ed[cnt].w=w,ed[cnt].nxt=h[u],h[u]=cnt;
    	cnt++; ed[cnt].v=u,ed[cnt].w=w,ed[cnt].nxt=h[v],h[v]=cnt;
    }
    int ans;
    int G,siz0,siz[N],chSiz[N]; bool vst[N];
    void getG(int u,int fa)
    {
    	siz[u]=1,chSiz[u]=0;
    	for(int i=h[u];i;i=ed[i].nxt)
    	{
    		int v=ed[i].v;
    		if(vst[v]||v==fa) continue;
    		getG(v,u); siz[u]+=siz[v],chSiz[u]=max(chSiz[u],siz[v]);
    	}
    	chSiz[u]=max(chSiz[u],siz0-siz[u]);
    	if(chSiz[u]<chSiz[G]) G=u;
    }
    int tCnt; prInt t[N]; int pre[K];
    void getD(int u,int fa,int dst,int dpt)
    {
    	if(dst>k) return;
    	t[++tCnt]=prInt(dst,dpt);
    	for(int i=h[u];i;i=ed[i].nxt)
    	{
    		int v=ed[i].v;
    		if(vst[v]||v==fa) continue;
    		getD(v,u,dst+ed[i].w,dpt+1);
    	}
    }
    int calc(int u,int d0)
    {
    	tCnt=0; getD(u,0,d0,1);
    	int res=INF;
    	for(int i=1;i<=tCnt;i++) res=min(res,t[i].second+pre[k-t[i].first]);
    	for(int i=1;i<=tCnt;i++) pre[t[i].first]=min(pre[t[i].first],t[i].second);
    	return res;
    }
    void reset(int u,int fa,int dst)
    {
    	if(dst>k) return;
    	pre[dst]=INF;
    	for(int i=h[u];i;i=ed[i].nxt)
    	{
    		int v=ed[i].v;
    		if(!vst[v]&&v!=fa) reset(v,u,dst+ed[i].w);
    	}
    }
    void solve(int u);
    void DC(int u)
    {
    	vst[u]=true; pre[0]=0;
    	for(int i=h[u];i;i=ed[i].nxt)
    	{
    		int v=ed[i].v;
    		if(vst[v]) continue;
    		if(siz[v]>siz[u]) siz[v]=siz0-siz[u];
    		ans=min(ans,calc(v,ed[i].w));
    	}
    	reset(u,0,0);
    	for(int i=h[u];i;i=ed[i].nxt) {int v=ed[i].v; if(!vst[v]) solve(v);}
    }
    void solve(int u) {siz0=siz[u],G=0,chSiz[G]=n,getG(u,0),DC(G);}
    int main()
    {
    	freopen("bz2599.in","r",stdin);
    	n=read(),k=read();
    	for(int i=1;i<=n-1;i++)
    	{
    		int u=read()+1,v=read()+1,w=read();
    		edAdd(u,v,w);
    	}
    	memset(pre,0x3F,sizeof pre);
    	ans=INF; siz[1]=n,solve(1);
    	if(ans<INF) printf("%d
    ",ans);
    	else puts("-1");
    	return 0;
    }
    

    P.S.

    不只是点分治,CDQ分治时也不能使用memset来初始化。我感觉大部分的分治似乎都不行呢。

  • 相关阅读:
    NBU7.0 RMAN 异机恢复 not found in NetBackup catalog
    配置Apache支持PHP5
    【浅墨Unity3D Shader编程】之中的一个 夏威夷篇:游戏场景的创建 &amp; 第一个Shader的书写
    关于 rman duplicate from active database 搭建dataguard--系列一
    <html>
    hdu 3622 二分+2-sat
    解决duilib水平布局(HorizontalLayout)中控件位置计算错误的问题
    Android SqlDelight具体解释和Demo样例
    HBase总结(十一)hbase Java API 介绍及使用演示样例
    [置顶] MyEclipse显示中文界面,在线安装教程
  • 原文地址:https://www.cnblogs.com/VisJiao/p/BZOJ2599.html
Copyright © 2020-2023  润新知