• 奇异值分解(SVD)


        奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

    1. 回顾特征值和特征向量

        我们首先回顾下特征值和特征向量的定义如下:

    Ax=λx

        其中A是一个n×n的实对称矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量。

        求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值λ1λ2...λn,以及这n个特征值所对应的特征向量{w1,w2,...wn},,如果这n个特征向量线性无关,那么矩阵A就可以用下式的特征分解表示:

    A=WΣW1

        其中W是这n个特征向量所张成的n×n维矩阵,而Σ为这n个特征值为主对角线的n×n维矩阵。

        一般我们会把W的这n个特征向量标准化,即满足||wi||2=1, 或者说wiTwi=1,此时W的n个特征向量为标准正交基,满足WTW=I,即WT=W1, 也就是说W为酉矩阵。

        这样我们的特征分解表达式可以写成

    A=WΣWT

        注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

    2.  SVD的定义

        SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为:

    A=UΣVT

        其中U是一个m×m的矩阵,Σ是一个m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个n×n的矩阵。U和V都是酉矩阵,即满足UTU=I,VTV=I。下图可以很形象的看出上面SVD的定义:

        那么我们如何求出SVD分解后的U,Σ,V这三个矩阵呢?

        如果我们将A的转置和A做矩阵乘法,那么会得到n×n的一个方阵ATA。既然ATA是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

    (ATA)vi=λivi

        这样我们就可以得到矩阵ATA的n个特征值和对应的n个特征向量v了。将ATA的所有特征向量张成一个n×n的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

        如果我们将A和A的转置做矩阵乘法,那么会得到m×m的一个方阵AAT。既然AAT是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

    (AAT)ui=λiui

        这样我们就可以得到矩阵AAT的m个特征值和对应的m个特征向量u了。将AAT的所有特征向量张成一个m×m的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

        U和V我们都求出来了,现在就剩下奇异值矩阵Σ没有求出了。由于Σ除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值σ就可以了。

        我们注意到:

    A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui

         这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵Σ

        上面还有一个问题没有讲,就是我们说ATA的特征向量组成的就是我们SVD中的V矩阵,而AAT的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。

    A=UΣVTAT=VΣTUTATA=VΣTUTUΣVT=VΣ2VT

        上式证明使用了:UTU=I,ΣTΣ=Σ2可以看出ATA的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到AAT的特征向量组成的就是我们SVD中的U矩阵。

        进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

    σi=λi

        这样也就是说,我们可以不用σi=Avi/ui来计算奇异值,也可以通过求出ATA的特征值取平方根来求奇异值。

    3. SVD计算举例

        这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

    A=(011110)

        我们首先求出ATAAAT

    ATA=(011110)(011110)=(2112)

    AAT=(011110)(011110)=(110121011)

         进而求出ATA的特征值和特征向量:

    λ1=3;v1=(1/21/2);λ2=1;v2=(1/21/2)

        接着求AAT的特征值和特征向量:

    λ1=3;u1=(1/62/61/6);λ2=1;u2=(1/201/2);λ3=0;u3=(1/31/31/3)
     

        利用Avi=σiui,i=1,2求奇异值:

    (011110)(1/21/2)=σ1(1/62/61/6)σ1=3

    (011110)(1/21/2)=σ2(1/201/2)σ2=1

    当然,我们也可以用σi=λi直接求出奇异值为3和1.

     最终得到A的奇异值分解为:

    A=UΣVT=(1/61/21/32/601/31/61/21/3)(300100)(1/21/21/21/2)
          

    4. SVD的一些性质 

        上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

        对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:

    Am×n=Um×mΣm×nVn×nTUm×kΣk×kVk×nT

        其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵Um×k,Σk×k,Vk×nT来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

        由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

    5. SVD用于PCA

        在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵XTX的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵XTX,当样本数多样本特征数也多的时候,这个计算量是很大的。

        注意到我们的SVD也可以得到协方差矩阵XTX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵XTX,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

        另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

        假设我们的样本是m×n的矩阵X,如果我们通过SVD找到了矩阵XXT最大的d个特征向量张成的m×d维矩阵U,则我们如果进行如下处理:

    Xd×n=Ud×mTXm×n

        可以得到一个d×n的矩阵X‘,这个矩阵和我们原来的m×n维样本矩阵X相比,行数从m减到了d,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。    

    6. SVD小结 

        SVD作为一个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

    转载自刘建平Pinard
    https://www.cnblogs.com/pinard/p/6251584.html

  • 相关阅读:
    521.最长特殊序列 I
    520.检查大写字母
    459.重复的子字符串
    Java 读取 .properties 文件的几种方式
    Idea 使用教程
    db2 with用法
    DB2 alter 新增/删除/修改列
    Bootstrap treegrid 实现树形表格结构
    Mysql 递归查询
    navicat for mysql 下载安装教程
  • 原文地址:https://www.cnblogs.com/Valeyw/p/15125611.html
Copyright © 2020-2023  润新知