Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
问题:
给定两个字符串 A和B,由A转成B所需的最少编辑操作次数。允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将A(kitten)转成B(sitting):
sitten (k→s)替换
sittin (e→i)替换
sitting (→g)插入
思路:
如果我们用 i 表示当前字符串 A 的下标,j 表示当前字符串 B 的下标。 如果我们用d[i, j] 来表示A[1, ... , i] B[1, ... , j] 之间的最少编辑操作数。那么我们会有以下发现:
1. d[0, j] = j;
2. d[i, 0] = i;
3. d[i, j] = d[i-1, j - 1] if A[i] == B[j]
4. d[i, j] = min(d[i-1, j - 1], d[i, j - 1], d[i-1, j]) + 1 if A[i] != B[j]
所以,要找出最小编辑操作数,只需要从底自上判断就可以了。
class Solution { public: int minDistance(string word1, string word2) { int m=word1.size(); int n=word2.size(); if(m==0)return n; if(n==0)return m; vector<int> vec(n+1,INT_MAX); vector<vector<int>> d(m+1,vec); for(int ii=0;ii<=m;ii++)d[ii][0]=ii; for(int jj=0;jj<=n;jj++)d[0][jj]=jj; for(int i=1;i<=m;i++) { for(int j=1;j<=n;j++) { if(word1[i-1]==word2[j-1])d[i][j]=d[i-1][j-1]; else { d[i][j]=min(d[i-1][j-1]+1,min(d[i-1][j]+1,d[i][j-1]+1)); } } } return d[m][n]; } };