• hdu 2604 Queuing(矩阵快速幂乘法)


    Problem Description
    Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 


     
     Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
    Your task is to calculate the number of E-queues mod M with length L by writing a program.
    Input
    Input a length L (0 <= L <= 10 6) and M.
    Output
    Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
    Sample Input
    3 8
    4 7
    4 8
     
    Sample Output
    6 
    2 
    1
     
    Source
     

    题意: 
    n个人排队,f表示女,m表示男,包含子串‘fmf’和‘fff’的序列为O队列,否则为E队列,有多少个序列为E队列。

    分析: 
    矩阵快速幂入门题。 

    用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1); 
    如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是 
    mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4) 
    所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂 
    构造一个矩阵: 
    pic

      1 #pragma comment(linker, "/STACK:1024000000,1024000000")
      2 #include<iostream>
      3 #include<cstdio>
      4 #include<cstring>
      5 #include<cmath>
      6 #include<math.h>
      7 #include<algorithm>
      8 #include<queue>
      9 #include<set>
     10 #include<bitset>
     11 #include<map>
     12 #include<vector>
     13 #include<stdlib.h>
     14 #include <stack>
     15 using namespace std;
     16 #define PI acos(-1.0)
     17 #define max(a,b) (a) > (b) ? (a) : (b)
     18 #define min(a,b) (a) < (b) ? (a) : (b)
     19 #define ll long long
     20 #define eps 1e-10
     21 #define MOD 1000000007
     22 #define N 1000006
     23 #define inf 1e12
     24 int L,M;
     25 struct Matrix{
     26    int mp[4][4];
     27 };
     28 Matrix Mul(Matrix a,Matrix b){
     29    Matrix res;
     30    for(int i=0;i<4;i++){
     31       for(int j=0;j<4;j++){
     32          res.mp[i][j]=0;
     33          for(int k=0;k<4;k++){
     34             res.mp[i][j]=(res.mp[i][j]+(a.mp[i][k]*b.mp[k][j])%M+M)%M;
     35          }
     36       }
     37    }
     38    return res;
     39 }
     40 Matrix fastm(Matrix a,int b){
     41    Matrix res;
     42    memset(res.mp,0,sizeof(res.mp));
     43    for(int i=0;i<4;i++){
     44       res.mp[i][i]=1;
     45    }
     46    while(b){
     47       if(b&1){
     48          res=Mul(res,a);
     49       }
     50       a=Mul(a,a);
     51       b>>=1;
     52    }
     53    return res;
     54 }
     55 int main()
     56 {
     57    while(scanf("%d%d",&L,&M)==2){
     58 
     59       if(L==1){
     60          printf("%d
    ",2%M);
     61          continue;
     62       }
     63       if(L==2){
     64          printf("%d
    ",2%M);
     65          continue;
     66       }
     67       if(L==3){
     68          printf("%d
    ",6%M);
     69          continue;
     70       }
     71       if(L==4){
     72          printf("%d
    ",9%M);
     73          continue;
     74       }
     75 
     76       Matrix tmp;
     77       for(int i=0;i<4;i++){
     78          for(int j=0;j<4;j++){
     79             tmp.mp[i][j]=0;
     80          }
     81       }
     82 
     83       tmp.mp[0][0]=1;
     84       tmp.mp[0][2]=1;
     85       tmp.mp[0][3]=1;
     86       tmp.mp[1][0]=1;
     87       tmp.mp[2][1]=1;
     88       tmp.mp[3][2]=1;
     89       Matrix cnt=fastm(tmp,L-4);
     90 
     91 
     92       Matrix g;
     93       g.mp[0][0]=9;
     94       g.mp[1][0]=6;
     95       g.mp[2][0]=4;
     96       g.mp[3][0]=2;
     97       cnt=Mul(cnt,g);
     98       printf("%d
    ",cnt.mp[0][0]%M);
     99    }
    100 
    101     return 0;
    102 }
    View Code
  • 相关阅读:
    google jQuery 1.4.2引用文件,jQuery 1.4.2 引用地址,jQuery引用地址
    html input checkbox js,jQuery
    HTML <fieldset> 标签
    ul 水平,行内块放置,取消点点
    C# Xml 操作
    DropDownList 下拉菜单控件
    jQuery,js : missing)after argument list
    PHP会员权限设计
    主流ETL工具选型
    windows XP下MySQL Cluster集群安装配置 .
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/5040049.html
Copyright © 2020-2023  润新知