• poj 2976 Dropping tests (二分搜索之最大化平均值之01分数规划)


    Description

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be   
    .

    .

    Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
    
    Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes  

     .

    Input

    The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains nintegers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

    Output

    For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

    Sample Input

    3 1
    5 0 2
    5 1 6
    4 2
    1 2 7 9
    5 6 7 9
    0 0

    Sample Output

    83
    100

    Hint

    To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

    Source

     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<math.h>
     6 #include<stdlib.h>
     7 using namespace std;
     8 #define N 1006
     9 int n,k;
    10 double ratio;
    11 struct Node{
    12     double a,b;
    13     bool friend operator <(Node x,Node y){
    14         return x.a-ratio*x.b>y.a-ratio*y.b;
    15     }
    16 }node[N];
    17 bool solve(double mid){
    18     ratio=mid;
    19     sort(node,node+n);
    20     double sum1=0;
    21     double sum2=0;
    22     for(int i=0;i<n-k;i++){
    23         sum1+=node[i].a;
    24         sum2+=node[i].b;
    25     }
    26     return sum1/sum2>=mid;
    27 }
    28 
    29 int main()
    30 {
    31     while(scanf("%d%d",&n,&k)==2 && n+k!=0){
    32         for(int i=0;i<n;i++){
    33             scanf("%lf",&node[i].a);
    34         }
    35         for(int i=0;i<n;i++){
    36             scanf("%lf",&node[i].b);
    37         }
    38         double low=0;
    39         double high=1;
    40         for(int i=0;i<1000;i++){
    41             double mid=(low+high)/2;
    42             if(solve(mid)){
    43                 low=mid;
    44             }
    45             else{
    46                 high=mid;
    47             }
    48         }
    49         printf("%.0lf
    ",high*100);
    50     }
    51     return 0;
    52 }
    View Code

    乍看以为贪心或dp能解决,后来发现贪心策略与当前的总体准确率有关,行不通,于是二分解决。

    依然需要确定一个贪心策略,每次贪心地去掉那些对正确率贡献小的考试。如何确定某个考试[a_i, b_i]对总体准确率x的贡献呢?a_i / b_i肯定是不行的,不然例子里的[0,1]会首当其冲被刷掉。在当前准确率为x的情况下,这场考试“额外”对的题目数量是a_i – x * b_i,当然这个值有正有负,恰好可以作为“贡献度”的测量。于是利用这个给考试排个降序,后k个刷掉就行了。

    之后就是二分搜索了,从0到1之间搜一遍,我下面的注释应该很详细,不啰嗦了。

     1 #ifndef ONLINE_JUDGE
     2 #pragma warning(disable : 4996)
     3 #endif
     4 #include <iostream>
     5 #include <algorithm>
     6 #include <cmath>
     7 #include <iomanip>
     8 using namespace std;
     9  
    10 #define MAX_N 1000
    11 int n, k;
    12 double x;    // 搜索过程中的正确率
    13 struct Test
    14 {
    15     int a, b;
    16     bool operator < (const Test& other) const
    17     {
    18         return a - x * b > other.a - x * other.b;    // 按照对准确率的贡献从大到小排序
    19     }
    20 };
    21 Test test[MAX_N];
    22  
    23 // 判断是否能够获得大于mid的准确率
    24 bool C(double mid)
    25 {
    26     x = mid;
    27     sort(test, test + n);
    28     double total_a = 0, total_b = 0;
    29     for (int i = 0; i < n - k; ++i)                    // 去掉后k个数计算准确率
    30     {
    31         total_a += test[i].a;
    32         total_b += test[i].b;
    33     }
    34  
    35     return total_a / total_b  > mid;
    36 }
    37  
    38 ///////////////////////////SubMain//////////////////////////////////
    39 int main(int argc, char *argv[])
    40 {
    41 #ifndef ONLINE_JUDGE
    42     freopen("in.txt", "r", stdin);
    43     freopen("out.txt", "w", stdout);
    44 #endif
    45     while (cin >> n >> k && (n || k))
    46     {
    47         for (int i = 0; i < n; ++i)
    48         {
    49             cin >> test[i].a;
    50         }
    51         for (int i = 0; i < n; ++i)
    52         {
    53             cin >> test[i].b;
    54         }
    55  
    56         double lb = 0; double ub = 1;
    57         while (abs(ub - lb) > 1e-4)
    58         {
    59             double mid = (lb + ub) / 2;
    60             if (C(mid))
    61             {
    62                 lb = mid;    // 行,说明mid太小
    63             }
    64             else
    65             {
    66                 ub = mid;    // 不行,说明mid太大
    67             }
    68         }
    69  
    70         cout << fixed << setprecision(0) << lb * 100 << endl;
    71     }
    72 #ifndef ONLINE_JUDGE
    73     fclose(stdin);
    74     fclose(stdout);
    75     system("out.txt");
    76 #endif
    77     return 0;
    78 }
    79 ///////////////////////////End Sub//////////////////////////////////
    View Code
  • 相关阅读:
    django计数器: form collections import Counter
    issubclass使用
    Python rpartition() 方法
    try...except...else高级用法
    FBV及CBV区别
    类属性及对象属性
    判断类或对象方法
    django md5
    @cached_property
    js Array 中的 map, filter 和 reduce
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4782038.html
Copyright © 2020-2023  润新知