Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。
Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种对 Java 集合运算和表达的高阶抽象。
Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。
这种风格将要处理的元素集合看作一种流, 流在管道中传输, 并且可以在管道的节点上进行处理, 比如筛选, 排序,聚合等。
元素流在管道中经过中间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果。
+--------------------+ +------+ +------+ +---+ +-------+ | stream of elements +-----> |filter+-> |sorted+-> |map+-> |collect| +--------------------+ +------+ +------+ +---+ +-------+
以上的流程转换为 Java 代码为:
1 List<Integer> transactionsIds = 2 widgets.stream() 3 .filter(b -> b.getColor() == RED) 4 .sorted((x,y) -> x.getWeight() - y.getWeight()) 5 .mapToInt(Widget::getWeight) 6 .sum();
什么是 Stream?
Stream(流)是一个来自数据源的元素队列并支持聚合操作
- <strong元素队列< strong="">元素是特定类型的对象,形成一个队列。 Java中的Stream并不会存储元素,而是按需计算。
- 数据源 流的来源。 可以是集合,数组,I/O channel, 产生器generator 等。
- 聚合操作 类似SQL语句一样的操作, 比如filter, map, reduce, find, match, sorted等。
和以前的Collection操作不同, Stream操作还有两个基础的特征:
- Pipelining: 中间操作都会返回流对象本身。 这样多个操作可以串联成一个管道, 如同流式风格(fluent style)。 这样做可以对操作进行优化, 比如延迟执行(laziness)和短路( short-circuiting)。
- 内部迭代: 以前对集合遍历都是通过Iterator或者For-Each的方式, 显式的在集合外部进行迭代, 这叫做外部迭代。 Stream提供了内部迭代的方式, 通过访问者模式(Visitor)实现。
生成流
在 Java 8 中, 集合接口有两个方法来生成流:
-
stream() − 为集合创建串行流。
-
parallelStream() − 为集合创建并行流。
1 List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl"); 2 List<String> filtered = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.toList());
forEach
Stream 提供了新的方法 'forEach' 来迭代流中的每个数据。以下代码片段使用 forEach 输出了10个随机数:
Random random = new Random(); random.ints().limit(10).forEach(System.out::println);
map
map 方法用于映射每个元素到对应的结果,以下代码片段使用 map 输出了元素对应的平方数:
List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5); // 获取对应的平方数 List<Integer> squaresList = numbers.stream().map( i -> i*i).distinct().collect(Collectors.toList());
filter
filter 方法用于通过设置的条件过滤出元素。以下代码片段使用 filter 方法过滤出空字符串:
List<String>strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl"); // 获取空字符串的数量 int count = strings.stream().filter(string -> string.isEmpty()).count();
limit
limit 方法用于获取指定数量的流。 以下代码片段使用 limit 方法打印出 10 条数据:
Random random = new Random(); random.ints().limit(10).forEach(System.out::println);
sorted
sorted 方法用于对流进行排序。以下代码片段使用 sorted 方法对输出的 10 个随机数进行排序:
Random random = new Random(); random.ints().limit(10).sorted().forEach(System.out::println);
并行(parallel)程序
parallelStream 是流并行处理程序的代替方法。以下实例我们使用 parallelStream 来输出空字符串的数量:
List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl"); // 获取空字符串的数量 int count = strings.parallelStream().filter(string -> string.isEmpty()).count();
我们可以很容易的在顺序运行和并行直接切换。
Collectors
Collectors 类实现了很多归约操作,例如将流转换成集合和聚合元素。Collectors 可用于返回列表或字符串:
List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl"); List<String> filtered = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.toList()); System.out.println("筛选列表: " + filtered); String mergedString = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.joining(", ")); System.out.println("合并字符串: " + mergedString);
统计
另外,一些产生统计结果的收集器也非常有用。它们主要用于int、double、long等基本类型上,它们可以用来产生类似如下的统计结果。
List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5); IntSummaryStatistics stats = numbers.stream().mapToInt((x) -> x).summaryStatistics(); System.out.println("列表中最大的数 : " + stats.getMax()); System.out.println("列表中最小的数 : " + stats.getMin()); System.out.println("所有数之和 : " + stats.getSum()); System.out.println("平均数 : " + stats.getAverage());
分组
通过groupBy对数据实现简便的分组。
1 public void testGroupBy1(){ 2 Map<String,List<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName)); 3 map.forEach((x,y)-> System.out.println(x+"->"+y)); 4 } 5 6 /** 7 * 如果只有两类,使用partitioningBy会比groupingBy更有效率 8 */ 9 public void testPartitioningBy(){ 10 Map<Boolean,List<Student>> map = Arrays.stream(students).collect(partitioningBy(x->x.getScore()>50)); 11 map.forEach((x,y)-> System.out.println(x+"->"+y)); 12 } 13 14 /** 15 * downstream指定类型 16 */ 17 public void testGroupBy2(){ 18 Map<String,Set<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName,toSet())); 19 map.forEach((x,y)-> System.out.println(x+"->"+y)); 20 } 21 22 /** 23 * downstream 聚合操作 24 */ 25 public void testGroupBy3(){ 26 /** 27 * counting 28 */ 29 Map<String,Long> map1 = Arrays.stream(students).collect(groupingBy(Student::getName,counting())); 30 map1.forEach((x,y)-> System.out.println(x+"->"+y)); 31 /** 32 * summingInt 33 */ 34 Map<String,Integer> map2 = Arrays.stream(students).collect(groupingBy(Student::getName,summingInt(Student::getScore))); 35 map2.forEach((x,y)-> System.out.println(x+"->"+y)); 36 /** 37 * maxBy 38 */ 39 Map<String,Optional<Student>> map3 = Arrays.stream(students).collect(groupingBy(Student::getName,maxBy(Comparator.comparing(Student::getScore)))); 40 map3.forEach((x,y)-> System.out.println(x+"->"+y)); 41 /** 42 * mapping 43 */ 44 Map<String,Set<Integer>> map4 = Arrays.stream(students).collect(groupingBy(Student::getName,mapping(Student::getScore,toSet()))); 45 map4.forEach((x,y)-> System.out.println(x+"->"+y)); 46 }