• 寻找最小(最大)的k个数


    题目描述:输入n个整数,输出其中最小的k个元素。

    例如:输入1,2,3,4,5,6,7,8这8个数字,则最小的4个数字为1,2,3,4。

    思路1:最容易想到的方法:先对这个序列从小到大排序,然后输出前面的最小的k个数即可。如果选择快速排序法来进行排序,则时间复杂度:O(n*logn)

    思路2:在思路1的基础上更进一步想想,题目并没有要求要查找的k个数,甚至后n-k个数是有序的,既然如此, 咱们又何必对所有的n个数都进行排序列?如此,我们能想打的一个方法是:遍历n个数,先把最先遍历到得k个数存入大小为k的数组之中,对这k个数,利用选 择或交换排序,找到k个数中的最大数kmax(kmax设为k个元素的数组中最大元素),用时O(k)(你应该知道,插入或选择排序查找操作需要O(k) 的时间),后再继续遍历后n-k个数,x与kmax比较:如果x<kmax,则x代替kmax,并再次重新找出k个元素的数组中最大元素kmax ‘;如果x>kmax,则不更新数组。这样,每次更新或不更新数组的所用的时间为O(k)或O(0),整趟下来,总的时间复杂度平均下来 为:n*O(k)=O(n*k)

    思路3:与思路2方法类似,只是用容量为k的最大堆取代思路2中数组的作用(从数组中找最大数需要O(k)次查 找,而从更新一个堆使之成为最大堆只需要O(logk)次操作)。具体做法如下:用容量为k的最大堆存储最先遍历到的k个数,并假设它们即是最小的k个 数,建堆费时O(k)后,有k1<k2<…<kmax(kmax设为大顶堆中最大元素)。继续遍历数列,每次遍历一个元素x,与堆顶元 素比较,x<kmax,更新堆(用时logk),否则不更新堆。这样下来,总费时O(k+(n-k)*logk)=O(n*logk)。

    思路4:按编程之美中给出的描述,类似快速排序的划分方法,N个数存储在数组S中,再从数组中随机选取一个数X(随机选取枢纽元,可做到线性期望时间O(N)的复杂度),把数组划分为Sa和Sb俩部分,Sa<=X<=Sb,如果要查找的k个元素小于Sa的元素个数,则返回Sa中较小的k个元素,否则返回Sa中所有元素+Sb中小的k-|Sa|个元素。像上述过程一样,这个运用类似快速排序的partition的快速选择SELECT算法寻找最小的k个元素,在最坏情况下亦能做到O(N)的复杂度。oh,太酷了,有没有!

    思路5:仍然用到数据结构:堆。具体做法为:针对整个数组序列建最小堆,建堆所用时间为O(n),然后取堆中的前k个数,总的时间复杂度即为:O(n+k*logn)。

    思路6:与上述思路5类似,不同的是在对元素数组原地建最小堆O(n)后,然后提取K次,但是每次提取时,换到顶部的元素只需要下移顶多k次就足够了,下移次数逐次减少(而上述思路5每次提取都需要logn,所以提取k次,思路7需要k*logn。而本思路只需要K^2)。 此种方法的复杂度为O(n+k^2)。此方法可能不太直观,一个更直观的理解是:每次取出堆顶元素后,最小堆的性质被破坏了,我们需要调整最小堆使之满足 最小堆的性质。由于我们只需要求取前k个数,我们无需将整个堆都完整的调整好,只需保证堆的最上面k个数是最小的就可以,即第一趟调整保持第0层到第k层 是最小堆,第二趟调整保持第0层到第k-1层是最小堆…,依次类推。

    在编码实现上述思路之前,你可能需要了解:快速排序堆排序

     思路3的一个实现:

     思路4的实现

    首先给出《编程之美》上给出的伪代码:

    一个简化实现的如下:

    题目描述

    输入n个整数,输出其中最小的k个。

    分析与解法

    解法一

    要求一个序列中最小的k个数,按照惯有的思维方式,则是先对这个序列从小到大排序,然后输出前面的最小的k个数。

    至于选取什么的排序方法,我想你可能会第一时间想到快速排序(我们知道,快速排序平均所费时间为 n*logn ),然后再遍历序列中前k个元素输出即可。因此,总的时间复杂度: O(n * log n)+O(k)=O(n * log n)

    解法二

    咱们再进一步想想,题目没有要求最小的k个数有序,也没要求最后n-k个数有序。既然如此,就没有必要对所有元素进行排序。这时,咱们想到了用选择或交换排序,即:

    1、遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数;
    2、对这k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为 O(k) );
    3、继续遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果 x < kmax ,用x替换kmax,并回到第二步重新找出k个元素的数组中最大元素kmax‘;如果 x >= kmax ,则继续遍历不更新数组。

    每次遍历,更新或不更新数组的所用的时间为 O(k) O(0) 。故整趟下来,时间复杂度为 n*O(k)=O(n*k)

    解法三

    更好的办法是维护容量为k的最大堆,原理跟解法二的方法相似:

    • 1、用容量为k的最大堆存储最先遍历到的k个数,同样假设它们即是最小的k个数;
    • 2、堆中元素是有序的,令k1<k2<...<kmax(kmax设为最大堆中的最大元素)
    • 3、遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与堆顶元素kmax比较:如果 x < kmax ,用x替换kmax,然后更新堆(用时logk);否则不更新堆。

    这样下来,总的时间复杂度: O(k+(n-k)*logk)=O(n*logk) 。此方法得益于堆中进行查找和更新的时间复杂度均为: O(logk) (若使用解法二:在数组中找出最大元素,时间复杂度: O(k))

    解法四

    在《数据结构与算法分析--c语言描述》一书,第7章第7.7.6节中,阐述了一种在平均情况下,时间复杂度为 O(N) 的快速选择算法。如下述文字:

    • 选取S中一个元素作为枢纽元v,将集合S-{v}分割成S1和S2,就像快速排序那样
      • 如果k <= |S1|,那么第k个最小元素必然在S1中。在这种情况下,返回QuickSelect(S1, k)。
      • 如果k = 1 + |S1|,那么枢纽元素就是第k个最小元素,即找到,直接返回它。
      • 否则,这第k个最小元素就在S2中,即S2中的第(k - |S1| - 1)个最小元素,我们递归调用并返回QuickSelect(S2, k - |S1| - 1)。

    此算法的平均运行时间为O(n)。

    示例代码如下:

    //QuickSelect 将第k小的元素放在 a[k-1]  
    void QuickSelect( int a[], int k, int left, int right )
    {
        int i, j;
        int pivot;
    
        if( left + cutoff <= right )
        {
            pivot = median3( a, left, right );
            //取三数中值作为枢纽元,可以很大程度上避免最坏情况
            i = left; j = right - 1;
            for( ; ; )
            {
                while( a[ ++i ] < pivot ){ }
                while( a[ --j ] > pivot ){ }
                if( i < j )
                    swap( &a[ i ], &a[ j ] );
                else
                    break;
            }
            //重置枢纽元
            swap( &a[ i ], &a[ right - 1 ] );  
    
            if( k <= i )
                QuickSelect( a, k, left, i - 1 );
            else if( k > i + 1 )
                QuickSelect( a, k, i + 1, right );
        }
        else  
            InsertSort( a + left, right - left + 1 );
    }
    

    这个快速选择SELECT算法,类似快速排序的划分方法。N个数存储在数组S中,再从数组中选取“中位数的中位数”作为枢纽元X,把数组划分为Sa和Sb 俩部分,Sa<=X<=Sb,如果要查找的k个元素小于Sa的元素个数,则返回Sa中较小的k个元素,否则返回Sa中所有元素+Sb中小的 k-|Sa|个元素,这种解法在平均情况下能做到 O(n) 的复杂度。

    更进一步,《算法导论》第9章第9.3节介绍了一个最坏情况下亦为O(n)时间的SELECT算法,有兴趣的读者可以参看。

    举一反三

    1、谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?

    分析:

     “假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素。
       那么可以把这些和看成N个有序数列:
              A[1]+B[1] <= A[1]+B[2] <= A[1]+B[3] <=…
              A[2]+B[1] <= A[2]+B[2] <= A[2]+B[3] <=…
              …
             A[N]+B[1] <= A[N]+B[2] <= A[N]+B[3] <=…
        问题转变成,在这N^2个有序数列里,找到前k小的元素”
    

    2、有两个序列A和B,A=(a1,a2,...,ak),B=(b1,b2,...,bk),A和B都按升序排列。对于1<=i,j<=k,求k个最小的(ai+bj)。要求算法尽量高效。

    3、给定一个数列a1,a2,a3,...,an和m个三元组表示的查询,对于每个查询(i,j,k),输出ai,ai+1,...,aj的升序排列中第k个数。

  • 相关阅读:
    解决Firefox下outerHTML不支持问题
    神奇的css属性pointerevents
    IE6 double marginleft Bug
    解决IE低版本不支持call和apply问题
    JavaScript函数参数的可修改性
    IE6/7 double paddingbottom Bug
    各浏览器对document.getElementById等方法的实现差异
    JavaScript中两种类型的全局对象/函数
    JavaScript子类用Object.getPrototypeOf去调用父类方法
    JavaScript声明全局变量三种方式的异同
  • 原文地址:https://www.cnblogs.com/UnGeek/p/5321464.html
Copyright © 2020-2023  润新知