• 【python3】如何建立爬虫代理ip池


    一、为什么需要建立爬虫代理ip池

                  在众多的网站防爬措施中,有一种是根据ip的访问频率进行限制的,在某段时间内,当某个ip的访问量达到一定的阀值时,该ip会被拉黑、在一段时间内被禁止访问。

          这种时候,可以通过降低爬虫的频率,或者更改ip来应对。后者就需要有一个可用的代理ip池,以供爬虫工作时切换。

    二、如何建立一个爬虫代理ip池         

          思路:   1、找到一个免费的ip代理网站(如:西刺代理)

                     2、爬取ip(常规爬取requests+BeautifulSoup)

                     3、验证ip有效性(携带爬取到的ip,去访问指定的url,看返回的状态码是不是200)

                     4、记录ip (写到文档)

          代码如下:

    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    import requests,threading,datetime
    from bs4 import BeautifulSoup
    import random
    
    """
    1、抓取西刺代理网站的代理ip
    2、并根据指定的目标url,对抓取到ip的有效性进行验证
    3、最后存到指定的path
    """
    
    # ------------------------------------------------------文档处理--------------------------------------------------------
    # 写入文档
    def write(path,text):
        with open(path,'a', encoding='utf-8') as f:
            f.writelines(text)
            f.write('
    ')
    # 清空文档
    def truncatefile(path):
        with open(path, 'w', encoding='utf-8') as f:
            f.truncate()
    # 读取文档
    def read(path):
        with open(path, 'r', encoding='utf-8') as f:
            txt = []
            for s in f.readlines():
                txt.append(s.strip())
        return txt
    # ----------------------------------------------------------------------------------------------------------------------
    # 计算时间差,格式: 时分秒
    def gettimediff(start,end):
        seconds = (end - start).seconds
        m, s = divmod(seconds, 60)
        h, m = divmod(m, 60)
        diff = ("%02d:%02d:%02d" % (h, m, s))
        return diff
    # ----------------------------------------------------------------------------------------------------------------------
    # 返回一个随机的请求头 headers
    def getheaders():
        user_agent_list = [ 
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1" 
            "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", 
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", 
            "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", 
            "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", 
            "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", 
            "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", 
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", 
            "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", 
            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", 
            "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", 
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", 
            "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", 
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", 
            "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", 
            "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", 
            "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", 
            "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
        ]
        UserAgent=random.choice(user_agent_list)
        headers = {'User-Agent': UserAgent}
        return headers
    # -----------------------------------------------------检查ip是否可用----------------------------------------------------
    def checkip(targeturl,ip):
        headers =getheaders()  # 定制请求头
        proxies = {"http": "http://"+ip, "https": "http://"+ip}  # 代理ip
        try:
            response=requests.get(url=targeturl,proxies=proxies,headers=headers,timeout=5).status_code
            if response == 200 :
                return True
            else:
                return False
        except:
            return False
    
    #-------------------------------------------------------获取代理方法----------------------------------------------------
    # 免费代理 XiciDaili
    def findip(type,pagenum,targeturl,path): # ip类型,页码,目标url,存放ip的路径
        list={'1': 'http://www.xicidaili.com/nt/', # xicidaili国内普通代理
              '2': 'http://www.xicidaili.com/nn/', # xicidaili国内高匿代理
              '3': 'http://www.xicidaili.com/wn/', # xicidaili国内https代理
              '4': 'http://www.xicidaili.com/wt/'} # xicidaili国外http代理
        url=list[str(type)]+str(pagenum) # 配置url
        headers = getheaders() # 定制请求头
        html=requests.get(url=url,headers=headers,timeout = 5).text
        soup=BeautifulSoup(html,'lxml')
        all=soup.find_all('tr',class_='odd')
        for i in all:
            t=i.find_all('td')
            ip=t[1].text+':'+t[2].text
            is_avail = checkip(targeturl,ip)
            if is_avail == True:
                write(path=path,text=ip)
                print(ip)
    
    #-----------------------------------------------------多线程抓取ip入口---------------------------------------------------
    def getip(targeturl,path):
         truncatefile(path) # 爬取前清空文档
         start = datetime.datetime.now() # 开始时间
         threads=[]
         for type in range(4):   # 四种类型ip,每种类型取前三页,共12条线程
             for pagenum in range(3):
                 t=threading.Thread(target=findip,args=(type+1,pagenum+1,targeturl,path))
                 threads.append(t)
         print('开始爬取代理ip')
         for s in threads: # 开启多线程爬取
             s.start()
         for e in threads: # 等待所有线程结束
             e.join()
         print('爬取完成')
         end = datetime.datetime.now() # 结束时间
         diff = gettimediff(start, end)  # 计算耗时
         ips = read(path)  # 读取爬到的ip数量
         print('一共爬取代理ip: %s 个,共耗时: %s 
    ' % (len(ips), diff))
    
    #-------------------------------------------------------启动-----------------------------------------------------------
    if __name__ == '__main__':
        path = 'ip.txt' # 存放爬取ip的文档path
        targeturl = 'http://www.cnblogs.com/TurboWay/' # 验证ip有效性的指定url
        getip(targeturl,path)

     

    结果:

           

               

  • 相关阅读:
    调用AsyncTask的excute方法不能立即执行程序的原因分析及改善方案
    辅助
    目录检索
    高斯消元法
    树套树
    珂朵莉树
    卢卡斯定理
    中国剩余定理
    数论基础
    网络流基础
  • 原文地址:https://www.cnblogs.com/TurboWay/p/8172246.html
Copyright © 2020-2023  润新知