• 【BZOJ】【1019】【SHOI2008】汉诺塔


    递推/DP


      类似普通汉诺塔的一个递推(模拟?$10^{18}$没法模拟吧……

      题解:http://blog.csdn.net/regina8023/article/details/43016813

    因为转移的优先顺序,所以到达每一个目标的转移过程是一定的。


    考虑dp方程:

    f[x][i]表示第x个柱子上有i个盘子,把他们都移动到g[x][i]这个柱子上要花得步数。


    首先考虑i=1,因为操作有优先顺序,因此g[x][1]可以确定,f[x][1]都是1。


    接下来考虑任意的i,那么我们需要把i-1个移动到g[x][i-1]上面去,再把剩下的一个移动到(1+2+3-x-g[x][i-1])上。


    现在原来在x上的i个处在的两个柱子上,其中一个放了1个盘子,另一个放了i-1个盘子。


    设g[x][i-1]=y,即i-1个盘子所在的柱子是y;1+2+3-x-g[x][i-1]=k,即一个盘所在的柱子是k。


    分两种情况讨论:

    (1)若g[y][i-1]=k,那么把这i-1个直接移到k上转移就完成了。

    g[x][i]=k   f[x][i]=f[x][i-1]+1+f[y][i-1]


    (2)若g[y][i-1]=x,这种情况要麻烦一些:

    把i-1个从y移动到x上,再把1个从k移动到y上,最后把i-1个从x上移动到y上。

    g[x][i]=y  f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[x][i-1]

     1 /**************************************************************
     2     Problem: 1019
     3     User: Tunix
     4     Language: C++
     5     Result: Accepted
     6     Time:0 ms
     7     Memory:808 kb
     8 ****************************************************************/
     9  
    10 //BZOJ 1019
    11 #include<cstdio>
    12 #define F(i,j,n) for(int i=j;i<=n;++i)
    13 using namespace std;
    14 typedef long long LL;
    15 /******************tamplate*********************/
    16 LL f[4][31];
    17 int g[4][31];
    18 bool v[4];
    19 int main(){
    20     int n; scanf("%d",&n);
    21     F(i,1,6){
    22         char s[5];
    23         scanf("%s",s);
    24         int from=s[0]-'A'+1,to=s[1]-'A'+1;
    25         if (v[from]) continue;
    26         v[from]=1;
    27         g[from][1]=to; f[from][1]=1;
    28     }
    29     F(i,2,n) F(j,1,3){
    30         int y=g[j][i-1];
    31         int k=6-y-j;
    32         f[j][i]=f[j][i-1]+1;
    33         if (k==g[y][i-1]){
    34             f[j][i]+=f[y][i-1];
    35             g[j][i]=k;
    36         }else{
    37             f[j][i]+=f[y][i-1]+1+f[j][i-1];
    38             g[j][i]=y;
    39         }
    40     }
    41     printf("%lld
    ",f[1][n]);
    42     return 0;
    43 }
    View Code

    1019: [SHOI2008]汉诺塔

    Time Limit: 1 Sec  Memory Limit: 162 MB
    Submit: 992  Solved: 613
    [Submit][Status][Discuss]

    Description

    汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体。

     

    对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大的盘子上面(如果移 动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上 面的那个盘子移到柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮助我们完成这个游戏。首 先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)赋予不同的优先级,然后,我们总是选择符合以下两个条件的操 作来移动盘子,直到所有的盘子都从柱子A移动到另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所 移动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计算按照上述策略操作汉诺塔移动所需要的步骤 数。

    Input

    输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。

    Output

    只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。

    Sample Input

    3
    AB BC CA BA CB AC

    Sample Output

    7

    HINT

    Source

    [Submit][Status][Discuss]
  • 相关阅读:
    [梦]2005.2.10
    日语广播总汇
    数词与量词
    切忌望文生义的日文汉字
    特別な読み方の漢字
    日本语能力考简介
    一天三练
    兴趣记忆法(1)顺口溜记忆
    兴趣记忆(3)谚语
    兴趣记忆(2)学歌
  • 原文地址:https://www.cnblogs.com/Tunix/p/4419253.html
Copyright © 2020-2023  润新知