• 【BZOJ】【2178】圆的面积并


    自适应辛普森积分


      Orz Hzwer

      辛普森真是个强大的东西……很多东西都能积= =

      这题的正解看上去很鬼畜,至少我这种不会计算几何的渣渣是写不出来……(对圆的交点求图包,ans=凸包的面积+一堆弓形的面积,另外还有中空的情况……那种凸包怎么求啊喂!)

      1 /**************************************************************
      2     Problem: 2178
      3     User: Tunix
      4     Language: C++
      5     Result: Accepted
      6     Time:8808 ms
      7     Memory:1372 kb
      8 ****************************************************************/
      9  
     10 //BZOJ 2178
     11 #include<cmath>
     12 #include<vector>
     13 #include<cstdio>
     14 #include<cstring>
     15 #include<cstdlib>
     16 #include<iostream>
     17 #include<algorithm>
     18 #define rep(i,n) for(int i=0;i<n;++i)
     19 #define F(i,j,n) for(int i=j;i<=n;++i)
     20 #define D(i,j,n) for(int i=j;i>=n;--i)
     21 #define pb push_back
     22 using namespace std;
     23 inline int getint(){
     24     int v=0,sign=1; char ch=getchar();
     25     while(ch<'0'||ch>'9'){ if (ch=='-') sign=-1; ch=getchar();}
     26     while(ch>='0'&&ch<='9'){ v=v*10+ch-'0'; ch=getchar();}
     27     return v*sign;
     28 }
     29 const int N=1010,INF=~0u>>2;
     30 const double eps=1e-13;
     31 typedef long long LL;
     32 typedef double db;
     33 /******************tamplate*********************/
     34 int n,top,st,ed;
     35 db xl[N],xr[N],ans;
     36 bool del[N];
     37 struct data{db x,y,r;}t[N],sk[N];
     38 struct line{db l,r;}p[N];
     39 db dis(data a,data b){
     40     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
     41 }
     42 bool cmp1(data a,data b){return a.r<b.r;}
     43 bool cmp2(data a,data b){return a.x-a.r<b.x-b.r;}
     44 bool cmp3(line a,line b){return a.l<b.l;}
     45 void init(){
     46     scanf("%d",&n);
     47     F(i,1,n) scanf("%lf%lf%lf",&t[i].x,&t[i].y,&t[i].r);
     48     sort(t+1,t+n+1,cmp1);
     49     F(i,1,n) F(j,i+1,n)
     50         if(dis(t[i],t[j])<=t[j].r-t[i].r){
     51             del[i]=1; break;
     52         }
     53     F(i,1,n)if(!del[i]) sk[++top]=t[i];n=top;
     54     sort(sk+1,sk+n+1,cmp2);
     55 }
     56 db getf(db x){
     57     int j,sz=0; db r,len=0,dis;
     58     F(i,st,ed){
     59         if (x<=xl[i]||x>=xr[i])continue;
     60         dis=sqrt(sk[i].r-(x-sk[i].x)*(x-sk[i].x));
     61         p[++sz].l=sk[i].y-dis; p[sz].r=sk[i].y+dis;
     62     }
     63     sort(p+1,p+sz+1,cmp3);
     64     F(i,1,sz){
     65         r=p[i].r;
     66         for(j=i+1;j<=sz;j++){
     67             if(p[j].l>r)break;
     68             if (r<p[j].r) r=p[j].r;
     69         }
     70         len+=r-p[i].l; i=j-1;
     71     }
     72     return len;
     73 }
     74 db cal(db l,db fl,db fmid,db fr){
     75     return (fl+fmid*4+fr)*l/6;
     76 }
     77 db simpson(db l,db mid,db r,db fl,db fmid,db fr,db s){
     78     db m1=(l+mid)/2,m2=(mid+r)/2;
     79     db f1=getf(m1),f2=getf(m2);
     80     db g1=cal(mid-l,fl,f1,fmid),g2=cal(r-mid,fmid,f2,fr);
     81     if (fabs(g1+g2-s)<eps)return g1+g2;
     82     return simpson(l,m1,mid,fl,f1,fmid,g1)+
     83            simpson(mid,m2,r,fmid,f2,fr,g2);
     84 }
     85 void work(){
     86     int i,j;
     87     db l,r,mid,fl,fr,fmid;
     88     F(i,1,n){
     89         xl[i]=sk[i].x-sk[i].r;
     90         xr[i]=sk[i].x+sk[i].r;
     91         sk[i].r*=sk[i].r;
     92     }
     93     F(i,1,n){
     94         l=xl[i]; r=xr[i];
     95         for(j=i+1;j<=n;j++){
     96             if (xl[j]>r) break;
     97             if (xr[j]>r) r=xr[j];
     98         }
     99         st=i; ed=j-1;i=j-1;
    100         mid=(l+r)/2;
    101         fl=getf(l); fr=getf(r); fmid=getf(mid);
    102         ans+=simpson(l,mid,r,fl,fmid,fr,cal(r-l,fl,fmid,fr));
    103     }
    104 }
    105 int main(){
    106 #ifndef ONLINE_JUDGE
    107     freopen("2178.in","r",stdin);
    108     freopen("2178.out","w",stdout);
    109 #endif
    110     init();
    111     work();
    112     printf("%.3lf",ans);
    113     return 0;
    114 }
    View Code

    2178: 圆的面积并

    Time Limit: 20 Sec  Memory Limit: 259 MB
    Submit: 908  Solved: 218
    [Submit][Status][Discuss]

    Description

    给出N个圆,求其面积并

    Input

    先给一个数字N ,N< = 1000 接下来是N行是圆的圆心,半径,其绝对值均为小于1000的整数

    Output

    面积并,保留三位小数

    Sample Input

    721

    。。。。。。

    Sample Output

    12707279.690

    HINT

    Source

    [Submit][Status][Discuss]
  • 相关阅读:
    剑指 Offer 33. 二叉搜索树的后序遍历序列
    剑指 Offer 32
    OCR技术浅析-tesserOCR(3)
    OCR技术浅析-自写篇(2)
    OCR技术浅析-无代码篇(1)
    SVN服务器+客户端安装和配置
    Git命令集
    数组模拟队列与单调队列求解滑动窗口
    upper_bound与lower_bound
    图中连通块的划分
  • 原文地址:https://www.cnblogs.com/Tunix/p/4391630.html
Copyright © 2020-2023  润新知