• [JSOI2009]游戏


    VII.[JSOI2009]游戏

    这个游♂戏好恶心……

    首先,奇偶建图(黑白染色)是肥肠明显的,都是老套路了。

    然后呢?

    然后就不知道了呀!我没学过博弈论呀!

    我们发现,如果我们在黑白染色出的二分图里面跑一个最大匹配,那么,从任何一个非匹配点出发,因为不会存在匹配边、非匹配边交错的路径,则先手一定会多走一步。相反,从一个匹配点出发,则后手会多走一步。

    那么,我们只要跑一次最大匹配,找出所有非匹配点即可。

    等等,这不对!因为最大匹配不止一个,在不同的最大匹配中可能非匹配点也不同!也就是说,我们要找出所有二分图最大匹配“非必须点”的集合,即“必须点”的补集。

    我们看一下一开始不正确的写法:

    for(int i=head[S];i!=-1;i=edge[i].next)if(edge[i].val)v.push_back(make_pair(edge[i].to/m+1,edge[i].to%m+1));
    for(int i=head[T];i!=-1;i=edge[i].next)if(!edge[i].val)v.push_back(make_pair(edge[i].to/m+1,edge[i].to%m+1));
    

    那么正确的写法呢?

    这就是不会匈牙利算法最伤的一点:用匈牙利非常好证明的结论,网络流就不好证明。

    我们从\(S\)出发,搜出任意一条匹配边、非匹配边交错的增广路。因为已经是最大匹配了,则增广路的终点肯定还是\(S\)侧的节点,而不是有用的\(T\)侧节点。不过,我们仍然可以接着这个增广路翻一下,让所有增广路上的节点都变成非匹配点。

    \(T\)出发也同理。

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    int n,m,dx[4]={1,0,-1,0},dy[4]={0,1,0,-1},tot;
    namespace MaxFlow{
    	const int N=10100,M=2010000;
    	int head[N],cur[N],dep[N],cnt,S,T,res;
    	struct node{
    		int to,next,val;
    	}edge[M];
    	void ae(int u,int v,int w){
    		edge[cnt].next=head[u],edge[cnt].to=v,edge[cnt].val=w,head[u]=cnt++;
    		edge[cnt].next=head[v],edge[cnt].to=u,edge[cnt].val=0,head[v]=cnt++;
    	}
    	queue<int>q;
    	inline bool bfs(){
    		memset(dep,0,sizeof(dep)),q.push(S),dep[S]=1;
    		while(!q.empty()){
    			register int x=q.front();q.pop();
    			for(register int i=cur[x]=head[x];i!=-1;i=edge[i].next)if(edge[i].val&&!dep[edge[i].to])dep[edge[i].to]=dep[x]+1,q.push(edge[i].to);
    		}
    		return dep[T]>0;
    	}
    	bool reach;
    	inline int dfs(int x,int flow){
    		if(x==T){
    			res+=flow;
    			reach=true;
    			return flow;
    		}
    		int used=0;
    		for(register int &i=cur[x];i!=-1;i=edge[i].next){
    			if(!edge[i].val||dep[edge[i].to]!=dep[x]+1)continue;
    			register int ff=dfs(edge[i].to,min(edge[i].val,flow-used));
    			if(ff){
    				edge[i].val-=ff;
    				edge[i^1].val+=ff;
    				used+=ff;
    				if(used==flow)break;
    			}
    		}
    		return used;
    	}
    	inline void Dinic(){
    		while(bfs()){
    			reach=true;
    			while(reach)reach=false,dfs(S,0x3f3f3f3f);
    		}
    	}
    }
    using namespace MaxFlow;
    char s[110][110];
    bool ok[10010],dir[10010],vis[10010];
    void DFS(int x,int sd){
    	if(vis[x])return;vis[x]=true;
    	if(dir[x]==sd)ok[x]=true;
    	for(int i=head[x];i!=-1;i=edge[i].next)if(edge[i].val==sd)DFS(edge[i].to,sd);
    }
    int main(){
    	scanf("%d%d",&n,&m),memset(head,-1,sizeof(head)),S=n*m,T=n*m+1;
    	for(int i=0;i<n;i++)scanf("%s",s[i]);
    	for(int i=0;i<n;i++)for(int j=0;j<m;j++){
    		if(s[i][j]=='#')continue;
    		if((i+j)&1){ae(i*m+j,T,1);continue;}
    		ae(S,i*m+j,1),dir[i*m+j]=1;
    		for(int k=0;k<4;k++)if(i+dx[k]<n&&i+dx[k]>=0&&j+dy[k]<m&&j+dy[k]>=0&&s[i+dx[k]][j+dy[k]]!='#')ae(i*m+j,(i+dx[k])*m+(j+dy[k]),1);
    	}
    	Dinic();
    	memset(vis,false,sizeof(vis)),DFS(S,1);
    	memset(vis,false,sizeof(vis)),DFS(T,0);
    	for(int i=0;i<S;i++)tot+=ok[i]; 
    	if(!tot)puts("LOSE");
    	else puts("WIN");
    	for(int i=0;i<S;i++)if(ok[i])printf("%d %d\n",i/m+1,i%m+1);
    	return 0;
    }
    

  • 相关阅读:
    Golang使用os/exec时产生僵尸(defunct)进程
    golang channel 用法总结
    Git常用方法
    插入排序,冒泡排序,快速排序,选择排序,归并排序 C++代码实现
    Linux 系统安装golang
    Linux 压缩解压常用命令汇总
    云主机挂载硬盘
    Linux服务器如何修改内核版本号
    关于FreePBX语音网关对接遇到的伤心事
    Asterisk13.23.1如何增加G723编码和G729编码
  • 原文地址:https://www.cnblogs.com/Troverld/p/14610807.html
Copyright © 2020-2023  润新知